Metamath Proof Explorer


Theorem ntrneineine0lem

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
ntrnei.x φ X B
Assertion ntrneineine0lem φ s 𝒫 B X I s N X

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 ntrnei.x φ X B
5 3 adantr φ s 𝒫 B I F N
6 4 adantr φ s 𝒫 B X B
7 simpr φ s 𝒫 B s 𝒫 B
8 1 2 5 6 7 ntrneiel φ s 𝒫 B X I s s N X
9 8 rexbidva φ s 𝒫 B X I s s 𝒫 B s N X
10 1 2 3 ntrneinex φ N 𝒫 𝒫 B B
11 elmapi N 𝒫 𝒫 B B N : B 𝒫 𝒫 B
12 10 11 syl φ N : B 𝒫 𝒫 B
13 12 4 ffvelrnd φ N X 𝒫 𝒫 B
14 13 elpwid φ N X 𝒫 B
15 14 sseld φ s N X s 𝒫 B
16 15 pm4.71rd φ s N X s 𝒫 B s N X
17 16 exbidv φ s s N X s s 𝒫 B s N X
18 17 bicomd φ s s 𝒫 B s N X s s N X
19 df-rex s 𝒫 B s N X s s 𝒫 B s N X
20 n0 N X s s N X
21 18 19 20 3bitr4g φ s 𝒫 B s N X N X
22 9 21 bitrd φ s 𝒫 B X I s N X