Metamath Proof Explorer


Theorem ntrneiel

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
ntrnei.x φ X B
ntrnei.s φ S 𝒫 B
Assertion ntrneiel φ X I S S N X

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 ntrnei.x φ X B
5 ntrnei.s φ S 𝒫 B
6 fveq2 m = S I m = I S
7 6 eleq2d m = S X I m X I S
8 7 elrab3 S 𝒫 B S m 𝒫 B | X I m X I S
9 5 8 syl φ S m 𝒫 B | X I m X I S
10 1 2 3 ntrneibex φ B V
11 10 pwexd φ 𝒫 B V
12 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
13 eqid F I = F I
14 1 11 10 2 12 13 4 fsovfvfvd φ F I X = m 𝒫 B | X I m
15 1 2 3 ntrneifv1 φ F I = N
16 15 fveq1d φ F I X = N X
17 14 16 eqtr3d φ m 𝒫 B | X I m = N X
18 17 eleq2d φ S m 𝒫 B | X I m S N X
19 9 18 bitr3d φ X I S S N X