Metamath Proof Explorer


Theorem fsovfvfvd

Description: Value of the operator, ( A O B ) , which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, A and B , when applied to function F and element Y . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses fsovd.fs O = a V , b V f 𝒫 b a y b x a | y f x
fsovd.a φ A V
fsovd.b φ B W
fsovfvd.g G = A O B
fsovfvd.f φ F 𝒫 B A
fsovfvfvd.h H = G F
fsovfvfvd.y φ Y B
Assertion fsovfvfvd φ H Y = x A | Y F x

Proof

Step Hyp Ref Expression
1 fsovd.fs O = a V , b V f 𝒫 b a y b x a | y f x
2 fsovd.a φ A V
3 fsovd.b φ B W
4 fsovfvd.g G = A O B
5 fsovfvd.f φ F 𝒫 B A
6 fsovfvfvd.h H = G F
7 fsovfvfvd.y φ Y B
8 1 2 3 4 5 fsovfvd φ G F = y B x A | y F x
9 6 8 syl5eq φ H = y B x A | y F x
10 eleq1 y = Y y F x Y F x
11 10 rabbidv y = Y x A | y F x = x A | Y F x
12 11 adantl φ y = Y x A | y F x = x A | Y F x
13 rabexg A V x A | Y F x V
14 2 13 syl φ x A | Y F x V
15 9 12 7 14 fvmptd φ H Y = x A | Y F x