| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsovd.fs | ⊢ 𝑂  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑓  ∈  ( 𝒫  𝑏  ↑m  𝑎 )  ↦  ( 𝑦  ∈  𝑏  ↦  { 𝑥  ∈  𝑎  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) ) ) | 
						
							| 2 |  | fsovd.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | fsovd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 4 |  | fsovfvd.g | ⊢ 𝐺  =  ( 𝐴 𝑂 𝐵 ) | 
						
							| 5 |  | fsovfvd.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) | 
						
							| 6 |  | fsovfvfvd.h | ⊢ 𝐻  =  ( 𝐺 ‘ 𝐹 ) | 
						
							| 7 |  | fsovfvfvd.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 8 | 1 2 3 4 5 | fsovfvd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐹 )  =  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 9 | 6 8 | eqtrid | ⊢ ( 𝜑  →  𝐻  =  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝐹 ‘ 𝑥 ) } ) ) | 
						
							| 10 |  | eleq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  ∈  ( 𝐹 ‘ 𝑥 )  ↔  𝑌  ∈  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 11 | 10 | rabbidv | ⊢ ( 𝑦  =  𝑌  →  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝑌  ∈  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  =  𝑌 )  →  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝑌  ∈  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 13 |  | rabexg | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑥  ∈  𝐴  ∣  𝑌  ∈  ( 𝐹 ‘ 𝑥 ) }  ∈  V ) | 
						
							| 14 | 2 13 | syl | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝑌  ∈  ( 𝐹 ‘ 𝑥 ) }  ∈  V ) | 
						
							| 15 | 9 12 7 14 | fvmptd | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑌 )  =  { 𝑥  ∈  𝐴  ∣  𝑌  ∈  ( 𝐹 ‘ 𝑥 ) } ) |