| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
| 2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
| 3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
| 4 |
|
ntrnei.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
ntrnei.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝐵 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑚 = 𝑆 → ( 𝐼 ‘ 𝑚 ) = ( 𝐼 ‘ 𝑆 ) ) |
| 7 |
6
|
eleq2d |
⊢ ( 𝑚 = 𝑆 → ( 𝑋 ∈ ( 𝐼 ‘ 𝑚 ) ↔ 𝑋 ∈ ( 𝐼 ‘ 𝑆 ) ) ) |
| 8 |
7
|
elrab3 |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑆 ∈ { 𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ ( 𝐼 ‘ 𝑚 ) } ↔ 𝑋 ∈ ( 𝐼 ‘ 𝑆 ) ) ) |
| 9 |
5 8
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ { 𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ ( 𝐼 ‘ 𝑚 ) } ↔ 𝑋 ∈ ( 𝐼 ‘ 𝑆 ) ) ) |
| 10 |
1 2 3
|
ntrneibex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 11 |
10
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐵 ∈ V ) |
| 12 |
1 2 3
|
ntrneiiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 13 |
|
eqid |
⊢ ( 𝐹 ‘ 𝐼 ) = ( 𝐹 ‘ 𝐼 ) |
| 14 |
1 11 10 2 12 13 4
|
fsovfvfvd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐼 ) ‘ 𝑋 ) = { 𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ ( 𝐼 ‘ 𝑚 ) } ) |
| 15 |
1 2 3
|
ntrneifv1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) = 𝑁 ) |
| 16 |
15
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐼 ) ‘ 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| 17 |
14 16
|
eqtr3d |
⊢ ( 𝜑 → { 𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ ( 𝐼 ‘ 𝑚 ) } = ( 𝑁 ‘ 𝑋 ) ) |
| 18 |
17
|
eleq2d |
⊢ ( 𝜑 → ( 𝑆 ∈ { 𝑚 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ ( 𝐼 ‘ 𝑚 ) } ↔ 𝑆 ∈ ( 𝑁 ‘ 𝑋 ) ) ) |
| 19 |
9 18
|
bitr3d |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐼 ‘ 𝑆 ) ↔ 𝑆 ∈ ( 𝑁 ‘ 𝑋 ) ) ) |