Metamath Proof Explorer


Theorem ntrneiel

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
ntrnei.x ( 𝜑𝑋𝐵 )
ntrnei.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
Assertion ntrneiel ( 𝜑 → ( 𝑋 ∈ ( 𝐼𝑆 ) ↔ 𝑆 ∈ ( 𝑁𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
3 ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
4 ntrnei.x ( 𝜑𝑋𝐵 )
5 ntrnei.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
6 fveq2 ( 𝑚 = 𝑆 → ( 𝐼𝑚 ) = ( 𝐼𝑆 ) )
7 6 eleq2d ( 𝑚 = 𝑆 → ( 𝑋 ∈ ( 𝐼𝑚 ) ↔ 𝑋 ∈ ( 𝐼𝑆 ) ) )
8 7 elrab3 ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑆 ∈ { 𝑚 ∈ 𝒫 𝐵𝑋 ∈ ( 𝐼𝑚 ) } ↔ 𝑋 ∈ ( 𝐼𝑆 ) ) )
9 5 8 syl ( 𝜑 → ( 𝑆 ∈ { 𝑚 ∈ 𝒫 𝐵𝑋 ∈ ( 𝐼𝑚 ) } ↔ 𝑋 ∈ ( 𝐼𝑆 ) ) )
10 1 2 3 ntrneibex ( 𝜑𝐵 ∈ V )
11 10 pwexd ( 𝜑 → 𝒫 𝐵 ∈ V )
12 1 2 3 ntrneiiex ( 𝜑𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
13 eqid ( 𝐹𝐼 ) = ( 𝐹𝐼 )
14 1 11 10 2 12 13 4 fsovfvfvd ( 𝜑 → ( ( 𝐹𝐼 ) ‘ 𝑋 ) = { 𝑚 ∈ 𝒫 𝐵𝑋 ∈ ( 𝐼𝑚 ) } )
15 1 2 3 ntrneifv1 ( 𝜑 → ( 𝐹𝐼 ) = 𝑁 )
16 15 fveq1d ( 𝜑 → ( ( 𝐹𝐼 ) ‘ 𝑋 ) = ( 𝑁𝑋 ) )
17 14 16 eqtr3d ( 𝜑 → { 𝑚 ∈ 𝒫 𝐵𝑋 ∈ ( 𝐼𝑚 ) } = ( 𝑁𝑋 ) )
18 17 eleq2d ( 𝜑 → ( 𝑆 ∈ { 𝑚 ∈ 𝒫 𝐵𝑋 ∈ ( 𝐼𝑚 ) } ↔ 𝑆 ∈ ( 𝑁𝑋 ) ) )
19 9 18 bitr3d ( 𝜑 → ( 𝑋 ∈ ( 𝐼𝑆 ) ↔ 𝑆 ∈ ( 𝑁𝑋 ) ) )