Metamath Proof Explorer


Theorem ntrneifv3

Description: The value of the neighbors (convergents) expressed in terms of the interior (closure) function. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
ntrnei.x ( 𝜑𝑋𝐵 )
Assertion ntrneifv3 ( 𝜑 → ( 𝑁𝑋 ) = { 𝑠 ∈ 𝒫 𝐵𝑋 ∈ ( 𝐼𝑠 ) } )

Proof

Step Hyp Ref Expression
1 ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
3 ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
4 ntrnei.x ( 𝜑𝑋𝐵 )
5 dfin5 ( 𝒫 𝐵 ∩ ( 𝑁𝑋 ) ) = { 𝑠 ∈ 𝒫 𝐵𝑠 ∈ ( 𝑁𝑋 ) }
6 1 2 3 ntrneinex ( 𝜑𝑁 ∈ ( 𝒫 𝒫 𝐵m 𝐵 ) )
7 elmapi ( 𝑁 ∈ ( 𝒫 𝒫 𝐵m 𝐵 ) → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 )
8 6 7 syl ( 𝜑𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 )
9 8 4 ffvelrnd ( 𝜑 → ( 𝑁𝑋 ) ∈ 𝒫 𝒫 𝐵 )
10 9 elpwid ( 𝜑 → ( 𝑁𝑋 ) ⊆ 𝒫 𝐵 )
11 sseqin2 ( ( 𝑁𝑋 ) ⊆ 𝒫 𝐵 ↔ ( 𝒫 𝐵 ∩ ( 𝑁𝑋 ) ) = ( 𝑁𝑋 ) )
12 10 11 sylib ( 𝜑 → ( 𝒫 𝐵 ∩ ( 𝑁𝑋 ) ) = ( 𝑁𝑋 ) )
13 3 adantr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝐼 𝐹 𝑁 )
14 4 adantr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝑋𝐵 )
15 simpr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 )
16 1 2 13 14 15 ntrneiel ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → ( 𝑋 ∈ ( 𝐼𝑠 ) ↔ 𝑠 ∈ ( 𝑁𝑋 ) ) )
17 16 bicomd ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → ( 𝑠 ∈ ( 𝑁𝑋 ) ↔ 𝑋 ∈ ( 𝐼𝑠 ) ) )
18 17 rabbidva ( 𝜑 → { 𝑠 ∈ 𝒫 𝐵𝑠 ∈ ( 𝑁𝑋 ) } = { 𝑠 ∈ 𝒫 𝐵𝑋 ∈ ( 𝐼𝑠 ) } )
19 5 12 18 3eqtr3a ( 𝜑 → ( 𝑁𝑋 ) = { 𝑠 ∈ 𝒫 𝐵𝑋 ∈ ( 𝐼𝑠 ) } )