| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
| 2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
| 3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
| 4 |
|
ntrnei.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
dfin5 |
⊢ ( 𝒫 𝐵 ∩ ( 𝑁 ‘ 𝑋 ) ) = { 𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) } |
| 6 |
1 2 3
|
ntrneinex |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |
| 7 |
|
elmapi |
⊢ ( 𝑁 ∈ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 ) |
| 9 |
8 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝒫 𝒫 𝐵 ) |
| 10 |
9
|
elpwid |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ) |
| 11 |
|
sseqin2 |
⊢ ( ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ↔ ( 𝒫 𝐵 ∩ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 12 |
10 11
|
sylib |
⊢ ( 𝜑 → ( 𝒫 𝐵 ∩ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐼 𝐹 𝑁 ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 16 |
1 2 13 14 15
|
ntrneiel |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑋 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ) ) |
| 17 |
16
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ↔ 𝑋 ∈ ( 𝐼 ‘ 𝑠 ) ) ) |
| 18 |
17
|
rabbidva |
⊢ ( 𝜑 → { 𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) } = { 𝑠 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ ( 𝐼 ‘ 𝑠 ) } ) |
| 19 |
5 12 18
|
3eqtr3a |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ ( 𝐼 ‘ 𝑠 ) } ) |