| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | 
						
							| 2 |  | ntrnei.f |  |-  F = ( ~P B O B ) | 
						
							| 3 |  | ntrnei.r |  |-  ( ph -> I F N ) | 
						
							| 4 |  | ntrnei.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | dfin5 |  |-  ( ~P B i^i ( N ` X ) ) = { s e. ~P B | s e. ( N ` X ) } | 
						
							| 6 | 1 2 3 | ntrneinex |  |-  ( ph -> N e. ( ~P ~P B ^m B ) ) | 
						
							| 7 |  | elmapi |  |-  ( N e. ( ~P ~P B ^m B ) -> N : B --> ~P ~P B ) | 
						
							| 8 | 6 7 | syl |  |-  ( ph -> N : B --> ~P ~P B ) | 
						
							| 9 | 8 4 | ffvelcdmd |  |-  ( ph -> ( N ` X ) e. ~P ~P B ) | 
						
							| 10 | 9 | elpwid |  |-  ( ph -> ( N ` X ) C_ ~P B ) | 
						
							| 11 |  | sseqin2 |  |-  ( ( N ` X ) C_ ~P B <-> ( ~P B i^i ( N ` X ) ) = ( N ` X ) ) | 
						
							| 12 | 10 11 | sylib |  |-  ( ph -> ( ~P B i^i ( N ` X ) ) = ( N ` X ) ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ s e. ~P B ) -> I F N ) | 
						
							| 14 | 4 | adantr |  |-  ( ( ph /\ s e. ~P B ) -> X e. B ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ s e. ~P B ) -> s e. ~P B ) | 
						
							| 16 | 1 2 13 14 15 | ntrneiel |  |-  ( ( ph /\ s e. ~P B ) -> ( X e. ( I ` s ) <-> s e. ( N ` X ) ) ) | 
						
							| 17 | 16 | bicomd |  |-  ( ( ph /\ s e. ~P B ) -> ( s e. ( N ` X ) <-> X e. ( I ` s ) ) ) | 
						
							| 18 | 17 | rabbidva |  |-  ( ph -> { s e. ~P B | s e. ( N ` X ) } = { s e. ~P B | X e. ( I ` s ) } ) | 
						
							| 19 | 5 12 18 | 3eqtr3a |  |-  ( ph -> ( N ` X ) = { s e. ~P B | X e. ( I ` s ) } ) |