Step |
Hyp |
Ref |
Expression |
1 |
|
ntrnei.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
2 |
|
ntrnei.f |
|- F = ( ~P B O B ) |
3 |
|
ntrnei.r |
|- ( ph -> I F N ) |
4 |
|
ntrnei.x |
|- ( ph -> X e. B ) |
5 |
|
dfin5 |
|- ( ~P B i^i ( N ` X ) ) = { s e. ~P B | s e. ( N ` X ) } |
6 |
1 2 3
|
ntrneinex |
|- ( ph -> N e. ( ~P ~P B ^m B ) ) |
7 |
|
elmapi |
|- ( N e. ( ~P ~P B ^m B ) -> N : B --> ~P ~P B ) |
8 |
6 7
|
syl |
|- ( ph -> N : B --> ~P ~P B ) |
9 |
8 4
|
ffvelrnd |
|- ( ph -> ( N ` X ) e. ~P ~P B ) |
10 |
9
|
elpwid |
|- ( ph -> ( N ` X ) C_ ~P B ) |
11 |
|
sseqin2 |
|- ( ( N ` X ) C_ ~P B <-> ( ~P B i^i ( N ` X ) ) = ( N ` X ) ) |
12 |
10 11
|
sylib |
|- ( ph -> ( ~P B i^i ( N ` X ) ) = ( N ` X ) ) |
13 |
3
|
adantr |
|- ( ( ph /\ s e. ~P B ) -> I F N ) |
14 |
4
|
adantr |
|- ( ( ph /\ s e. ~P B ) -> X e. B ) |
15 |
|
simpr |
|- ( ( ph /\ s e. ~P B ) -> s e. ~P B ) |
16 |
1 2 13 14 15
|
ntrneiel |
|- ( ( ph /\ s e. ~P B ) -> ( X e. ( I ` s ) <-> s e. ( N ` X ) ) ) |
17 |
16
|
bicomd |
|- ( ( ph /\ s e. ~P B ) -> ( s e. ( N ` X ) <-> X e. ( I ` s ) ) ) |
18 |
17
|
rabbidva |
|- ( ph -> { s e. ~P B | s e. ( N ` X ) } = { s e. ~P B | X e. ( I ` s ) } ) |
19 |
5 12 18
|
3eqtr3a |
|- ( ph -> ( N ` X ) = { s e. ~P B | X e. ( I ` s ) } ) |