Metamath Proof Explorer


Theorem ntrneifv3

Description: The value of the neighbors (convergents) expressed in terms of the interior (closure) function. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses ntrnei.o
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
ntrnei.f
|- F = ( ~P B O B )
ntrnei.r
|- ( ph -> I F N )
ntrnei.x
|- ( ph -> X e. B )
Assertion ntrneifv3
|- ( ph -> ( N ` X ) = { s e. ~P B | X e. ( I ` s ) } )

Proof

Step Hyp Ref Expression
1 ntrnei.o
 |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
2 ntrnei.f
 |-  F = ( ~P B O B )
3 ntrnei.r
 |-  ( ph -> I F N )
4 ntrnei.x
 |-  ( ph -> X e. B )
5 dfin5
 |-  ( ~P B i^i ( N ` X ) ) = { s e. ~P B | s e. ( N ` X ) }
6 1 2 3 ntrneinex
 |-  ( ph -> N e. ( ~P ~P B ^m B ) )
7 elmapi
 |-  ( N e. ( ~P ~P B ^m B ) -> N : B --> ~P ~P B )
8 6 7 syl
 |-  ( ph -> N : B --> ~P ~P B )
9 8 4 ffvelrnd
 |-  ( ph -> ( N ` X ) e. ~P ~P B )
10 9 elpwid
 |-  ( ph -> ( N ` X ) C_ ~P B )
11 sseqin2
 |-  ( ( N ` X ) C_ ~P B <-> ( ~P B i^i ( N ` X ) ) = ( N ` X ) )
12 10 11 sylib
 |-  ( ph -> ( ~P B i^i ( N ` X ) ) = ( N ` X ) )
13 3 adantr
 |-  ( ( ph /\ s e. ~P B ) -> I F N )
14 4 adantr
 |-  ( ( ph /\ s e. ~P B ) -> X e. B )
15 simpr
 |-  ( ( ph /\ s e. ~P B ) -> s e. ~P B )
16 1 2 13 14 15 ntrneiel
 |-  ( ( ph /\ s e. ~P B ) -> ( X e. ( I ` s ) <-> s e. ( N ` X ) ) )
17 16 bicomd
 |-  ( ( ph /\ s e. ~P B ) -> ( s e. ( N ` X ) <-> X e. ( I ` s ) ) )
18 17 rabbidva
 |-  ( ph -> { s e. ~P B | s e. ( N ` X ) } = { s e. ~P B | X e. ( I ` s ) } )
19 5 12 18 3eqtr3a
 |-  ( ph -> ( N ` X ) = { s e. ~P B | X e. ( I ` s ) } )