Metamath Proof Explorer


Theorem ntrneiel

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
ntrnei.f
|- F = ( ~P B O B )
ntrnei.r
|- ( ph -> I F N )
ntrnei.x
|- ( ph -> X e. B )
ntrnei.s
|- ( ph -> S e. ~P B )
Assertion ntrneiel
|- ( ph -> ( X e. ( I ` S ) <-> S e. ( N ` X ) ) )

Proof

Step Hyp Ref Expression
1 ntrnei.o
 |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
2 ntrnei.f
 |-  F = ( ~P B O B )
3 ntrnei.r
 |-  ( ph -> I F N )
4 ntrnei.x
 |-  ( ph -> X e. B )
5 ntrnei.s
 |-  ( ph -> S e. ~P B )
6 fveq2
 |-  ( m = S -> ( I ` m ) = ( I ` S ) )
7 6 eleq2d
 |-  ( m = S -> ( X e. ( I ` m ) <-> X e. ( I ` S ) ) )
8 7 elrab3
 |-  ( S e. ~P B -> ( S e. { m e. ~P B | X e. ( I ` m ) } <-> X e. ( I ` S ) ) )
9 5 8 syl
 |-  ( ph -> ( S e. { m e. ~P B | X e. ( I ` m ) } <-> X e. ( I ` S ) ) )
10 1 2 3 ntrneibex
 |-  ( ph -> B e. _V )
11 10 pwexd
 |-  ( ph -> ~P B e. _V )
12 1 2 3 ntrneiiex
 |-  ( ph -> I e. ( ~P B ^m ~P B ) )
13 eqid
 |-  ( F ` I ) = ( F ` I )
14 1 11 10 2 12 13 4 fsovfvfvd
 |-  ( ph -> ( ( F ` I ) ` X ) = { m e. ~P B | X e. ( I ` m ) } )
15 1 2 3 ntrneifv1
 |-  ( ph -> ( F ` I ) = N )
16 15 fveq1d
 |-  ( ph -> ( ( F ` I ) ` X ) = ( N ` X ) )
17 14 16 eqtr3d
 |-  ( ph -> { m e. ~P B | X e. ( I ` m ) } = ( N ` X ) )
18 17 eleq2d
 |-  ( ph -> ( S e. { m e. ~P B | X e. ( I ` m ) } <-> S e. ( N ` X ) ) )
19 9 18 bitr3d
 |-  ( ph -> ( X e. ( I ` S ) <-> S e. ( N ` X ) ) )