Step |
Hyp |
Ref |
Expression |
1 |
|
ntrnei.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
2 |
|
ntrnei.f |
|- F = ( ~P B O B ) |
3 |
|
ntrnei.r |
|- ( ph -> I F N ) |
4 |
|
ntrnei.x |
|- ( ph -> X e. B ) |
5 |
|
ntrnei.s |
|- ( ph -> S e. ~P B ) |
6 |
|
fveq2 |
|- ( m = S -> ( I ` m ) = ( I ` S ) ) |
7 |
6
|
eleq2d |
|- ( m = S -> ( X e. ( I ` m ) <-> X e. ( I ` S ) ) ) |
8 |
7
|
elrab3 |
|- ( S e. ~P B -> ( S e. { m e. ~P B | X e. ( I ` m ) } <-> X e. ( I ` S ) ) ) |
9 |
5 8
|
syl |
|- ( ph -> ( S e. { m e. ~P B | X e. ( I ` m ) } <-> X e. ( I ` S ) ) ) |
10 |
1 2 3
|
ntrneibex |
|- ( ph -> B e. _V ) |
11 |
10
|
pwexd |
|- ( ph -> ~P B e. _V ) |
12 |
1 2 3
|
ntrneiiex |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |
13 |
|
eqid |
|- ( F ` I ) = ( F ` I ) |
14 |
1 11 10 2 12 13 4
|
fsovfvfvd |
|- ( ph -> ( ( F ` I ) ` X ) = { m e. ~P B | X e. ( I ` m ) } ) |
15 |
1 2 3
|
ntrneifv1 |
|- ( ph -> ( F ` I ) = N ) |
16 |
15
|
fveq1d |
|- ( ph -> ( ( F ` I ) ` X ) = ( N ` X ) ) |
17 |
14 16
|
eqtr3d |
|- ( ph -> { m e. ~P B | X e. ( I ` m ) } = ( N ` X ) ) |
18 |
17
|
eleq2d |
|- ( ph -> ( S e. { m e. ~P B | X e. ( I ` m ) } <-> S e. ( N ` X ) ) ) |
19 |
9 18
|
bitr3d |
|- ( ph -> ( X e. ( I ` S ) <-> S e. ( N ` X ) ) ) |