| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | 
						
							| 2 |  | ntrnei.f |  |-  F = ( ~P B O B ) | 
						
							| 3 |  | ntrnei.r |  |-  ( ph -> I F N ) | 
						
							| 4 |  | ntrnei.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | ntrnei.s |  |-  ( ph -> S e. ~P B ) | 
						
							| 6 |  | fveq2 |  |-  ( m = S -> ( I ` m ) = ( I ` S ) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( m = S -> ( X e. ( I ` m ) <-> X e. ( I ` S ) ) ) | 
						
							| 8 | 7 | elrab3 |  |-  ( S e. ~P B -> ( S e. { m e. ~P B | X e. ( I ` m ) } <-> X e. ( I ` S ) ) ) | 
						
							| 9 | 5 8 | syl |  |-  ( ph -> ( S e. { m e. ~P B | X e. ( I ` m ) } <-> X e. ( I ` S ) ) ) | 
						
							| 10 | 1 2 3 | ntrneibex |  |-  ( ph -> B e. _V ) | 
						
							| 11 | 10 | pwexd |  |-  ( ph -> ~P B e. _V ) | 
						
							| 12 | 1 2 3 | ntrneiiex |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 13 |  | eqid |  |-  ( F ` I ) = ( F ` I ) | 
						
							| 14 | 1 11 10 2 12 13 4 | fsovfvfvd |  |-  ( ph -> ( ( F ` I ) ` X ) = { m e. ~P B | X e. ( I ` m ) } ) | 
						
							| 15 | 1 2 3 | ntrneifv1 |  |-  ( ph -> ( F ` I ) = N ) | 
						
							| 16 | 15 | fveq1d |  |-  ( ph -> ( ( F ` I ) ` X ) = ( N ` X ) ) | 
						
							| 17 | 14 16 | eqtr3d |  |-  ( ph -> { m e. ~P B | X e. ( I ` m ) } = ( N ` X ) ) | 
						
							| 18 | 17 | eleq2d |  |-  ( ph -> ( S e. { m e. ~P B | X e. ( I ` m ) } <-> S e. ( N ` X ) ) ) | 
						
							| 19 | 9 18 | bitr3d |  |-  ( ph -> ( X e. ( I ` S ) <-> S e. ( N ` X ) ) ) |