Metamath Proof Explorer


Theorem ntrneineine1lem

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
ntrnei.x φ X B
Assertion ntrneineine1lem φ s 𝒫 B ¬ X I s N X 𝒫 B

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 ntrnei.x φ X B
5 3 adantr φ s 𝒫 B I F N
6 4 adantr φ s 𝒫 B X B
7 simpr φ s 𝒫 B s 𝒫 B
8 1 2 5 6 7 ntrneiel φ s 𝒫 B X I s s N X
9 8 notbid φ s 𝒫 B ¬ X I s ¬ s N X
10 9 rexbidva φ s 𝒫 B ¬ X I s s 𝒫 B ¬ s N X
11 1 2 3 ntrneinex φ N 𝒫 𝒫 B B
12 elmapi N 𝒫 𝒫 B B N : B 𝒫 𝒫 B
13 11 12 syl φ N : B 𝒫 𝒫 B
14 13 4 ffvelrnd φ N X 𝒫 𝒫 B
15 14 elpwid φ N X 𝒫 B
16 biortn N X 𝒫 B ¬ 𝒫 B N X ¬ N X 𝒫 B ¬ 𝒫 B N X
17 15 16 syl φ ¬ 𝒫 B N X ¬ N X 𝒫 B ¬ 𝒫 B N X
18 df-rex s 𝒫 B ¬ s N X s s 𝒫 B ¬ s N X
19 nss ¬ 𝒫 B N X s s 𝒫 B ¬ s N X
20 18 19 bitr4i s 𝒫 B ¬ s N X ¬ 𝒫 B N X
21 df-ne N X 𝒫 B ¬ N X = 𝒫 B
22 ianor ¬ N X 𝒫 B 𝒫 B N X ¬ N X 𝒫 B ¬ 𝒫 B N X
23 eqss N X = 𝒫 B N X 𝒫 B 𝒫 B N X
24 22 23 xchnxbir ¬ N X = 𝒫 B ¬ N X 𝒫 B ¬ 𝒫 B N X
25 21 24 bitri N X 𝒫 B ¬ N X 𝒫 B ¬ 𝒫 B N X
26 17 20 25 3bitr4g φ s 𝒫 B ¬ s N X N X 𝒫 B
27 10 26 bitrd φ s 𝒫 B ¬ X I s N X 𝒫 B