Step |
Hyp |
Ref |
Expression |
1 |
|
ntrnei.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
2 |
|
ntrnei.f |
|- F = ( ~P B O B ) |
3 |
|
ntrnei.r |
|- ( ph -> I F N ) |
4 |
|
ntrnei.x |
|- ( ph -> X e. B ) |
5 |
3
|
adantr |
|- ( ( ph /\ s e. ~P B ) -> I F N ) |
6 |
4
|
adantr |
|- ( ( ph /\ s e. ~P B ) -> X e. B ) |
7 |
|
simpr |
|- ( ( ph /\ s e. ~P B ) -> s e. ~P B ) |
8 |
1 2 5 6 7
|
ntrneiel |
|- ( ( ph /\ s e. ~P B ) -> ( X e. ( I ` s ) <-> s e. ( N ` X ) ) ) |
9 |
8
|
notbid |
|- ( ( ph /\ s e. ~P B ) -> ( -. X e. ( I ` s ) <-> -. s e. ( N ` X ) ) ) |
10 |
9
|
rexbidva |
|- ( ph -> ( E. s e. ~P B -. X e. ( I ` s ) <-> E. s e. ~P B -. s e. ( N ` X ) ) ) |
11 |
1 2 3
|
ntrneinex |
|- ( ph -> N e. ( ~P ~P B ^m B ) ) |
12 |
|
elmapi |
|- ( N e. ( ~P ~P B ^m B ) -> N : B --> ~P ~P B ) |
13 |
11 12
|
syl |
|- ( ph -> N : B --> ~P ~P B ) |
14 |
13 4
|
ffvelrnd |
|- ( ph -> ( N ` X ) e. ~P ~P B ) |
15 |
14
|
elpwid |
|- ( ph -> ( N ` X ) C_ ~P B ) |
16 |
|
biortn |
|- ( ( N ` X ) C_ ~P B -> ( -. ~P B C_ ( N ` X ) <-> ( -. ( N ` X ) C_ ~P B \/ -. ~P B C_ ( N ` X ) ) ) ) |
17 |
15 16
|
syl |
|- ( ph -> ( -. ~P B C_ ( N ` X ) <-> ( -. ( N ` X ) C_ ~P B \/ -. ~P B C_ ( N ` X ) ) ) ) |
18 |
|
df-rex |
|- ( E. s e. ~P B -. s e. ( N ` X ) <-> E. s ( s e. ~P B /\ -. s e. ( N ` X ) ) ) |
19 |
|
nss |
|- ( -. ~P B C_ ( N ` X ) <-> E. s ( s e. ~P B /\ -. s e. ( N ` X ) ) ) |
20 |
18 19
|
bitr4i |
|- ( E. s e. ~P B -. s e. ( N ` X ) <-> -. ~P B C_ ( N ` X ) ) |
21 |
|
df-ne |
|- ( ( N ` X ) =/= ~P B <-> -. ( N ` X ) = ~P B ) |
22 |
|
ianor |
|- ( -. ( ( N ` X ) C_ ~P B /\ ~P B C_ ( N ` X ) ) <-> ( -. ( N ` X ) C_ ~P B \/ -. ~P B C_ ( N ` X ) ) ) |
23 |
|
eqss |
|- ( ( N ` X ) = ~P B <-> ( ( N ` X ) C_ ~P B /\ ~P B C_ ( N ` X ) ) ) |
24 |
22 23
|
xchnxbir |
|- ( -. ( N ` X ) = ~P B <-> ( -. ( N ` X ) C_ ~P B \/ -. ~P B C_ ( N ` X ) ) ) |
25 |
21 24
|
bitri |
|- ( ( N ` X ) =/= ~P B <-> ( -. ( N ` X ) C_ ~P B \/ -. ~P B C_ ( N ` X ) ) ) |
26 |
17 20 25
|
3bitr4g |
|- ( ph -> ( E. s e. ~P B -. s e. ( N ` X ) <-> ( N ` X ) =/= ~P B ) ) |
27 |
10 26
|
bitrd |
|- ( ph -> ( E. s e. ~P B -. X e. ( I ` s ) <-> ( N ` X ) =/= ~P B ) ) |