| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | 
						
							| 2 |  | ntrnei.f |  |-  F = ( ~P B O B ) | 
						
							| 3 |  | ntrnei.r |  |-  ( ph -> I F N ) | 
						
							| 4 |  | ntrnei.x |  |-  ( ph -> X e. B ) | 
						
							| 5 | 3 | adantr |  |-  ( ( ph /\ s e. ~P B ) -> I F N ) | 
						
							| 6 | 4 | adantr |  |-  ( ( ph /\ s e. ~P B ) -> X e. B ) | 
						
							| 7 |  | simpr |  |-  ( ( ph /\ s e. ~P B ) -> s e. ~P B ) | 
						
							| 8 | 1 2 5 6 7 | ntrneiel |  |-  ( ( ph /\ s e. ~P B ) -> ( X e. ( I ` s ) <-> s e. ( N ` X ) ) ) | 
						
							| 9 | 8 | notbid |  |-  ( ( ph /\ s e. ~P B ) -> ( -. X e. ( I ` s ) <-> -. s e. ( N ` X ) ) ) | 
						
							| 10 | 9 | rexbidva |  |-  ( ph -> ( E. s e. ~P B -. X e. ( I ` s ) <-> E. s e. ~P B -. s e. ( N ` X ) ) ) | 
						
							| 11 | 1 2 3 | ntrneinex |  |-  ( ph -> N e. ( ~P ~P B ^m B ) ) | 
						
							| 12 |  | elmapi |  |-  ( N e. ( ~P ~P B ^m B ) -> N : B --> ~P ~P B ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> N : B --> ~P ~P B ) | 
						
							| 14 | 13 4 | ffvelcdmd |  |-  ( ph -> ( N ` X ) e. ~P ~P B ) | 
						
							| 15 | 14 | elpwid |  |-  ( ph -> ( N ` X ) C_ ~P B ) | 
						
							| 16 |  | biortn |  |-  ( ( N ` X ) C_ ~P B -> ( -. ~P B C_ ( N ` X ) <-> ( -. ( N ` X ) C_ ~P B \/ -. ~P B C_ ( N ` X ) ) ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> ( -. ~P B C_ ( N ` X ) <-> ( -. ( N ` X ) C_ ~P B \/ -. ~P B C_ ( N ` X ) ) ) ) | 
						
							| 18 |  | df-rex |  |-  ( E. s e. ~P B -. s e. ( N ` X ) <-> E. s ( s e. ~P B /\ -. s e. ( N ` X ) ) ) | 
						
							| 19 |  | nss |  |-  ( -. ~P B C_ ( N ` X ) <-> E. s ( s e. ~P B /\ -. s e. ( N ` X ) ) ) | 
						
							| 20 | 18 19 | bitr4i |  |-  ( E. s e. ~P B -. s e. ( N ` X ) <-> -. ~P B C_ ( N ` X ) ) | 
						
							| 21 |  | df-ne |  |-  ( ( N ` X ) =/= ~P B <-> -. ( N ` X ) = ~P B ) | 
						
							| 22 |  | ianor |  |-  ( -. ( ( N ` X ) C_ ~P B /\ ~P B C_ ( N ` X ) ) <-> ( -. ( N ` X ) C_ ~P B \/ -. ~P B C_ ( N ` X ) ) ) | 
						
							| 23 |  | eqss |  |-  ( ( N ` X ) = ~P B <-> ( ( N ` X ) C_ ~P B /\ ~P B C_ ( N ` X ) ) ) | 
						
							| 24 | 22 23 | xchnxbir |  |-  ( -. ( N ` X ) = ~P B <-> ( -. ( N ` X ) C_ ~P B \/ -. ~P B C_ ( N ` X ) ) ) | 
						
							| 25 | 21 24 | bitri |  |-  ( ( N ` X ) =/= ~P B <-> ( -. ( N ` X ) C_ ~P B \/ -. ~P B C_ ( N ` X ) ) ) | 
						
							| 26 | 17 20 25 | 3bitr4g |  |-  ( ph -> ( E. s e. ~P B -. s e. ( N ` X ) <-> ( N ` X ) =/= ~P B ) ) | 
						
							| 27 | 10 26 | bitrd |  |-  ( ph -> ( E. s e. ~P B -. X e. ( I ` s ) <-> ( N ` X ) =/= ~P B ) ) |