| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | 
						
							| 2 |  | ntrnei.f |  |-  F = ( ~P B O B ) | 
						
							| 3 |  | ntrnei.r |  |-  ( ph -> I F N ) | 
						
							| 4 |  | ntrneifv.s |  |-  ( ph -> S e. ~P B ) | 
						
							| 5 |  | dfin5 |  |-  ( B i^i ( I ` S ) ) = { x e. B | x e. ( I ` S ) } | 
						
							| 6 | 1 2 3 | ntrneiiex |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 7 |  | elmapi |  |-  ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) | 
						
							| 8 | 6 7 | syl |  |-  ( ph -> I : ~P B --> ~P B ) | 
						
							| 9 | 8 4 | ffvelcdmd |  |-  ( ph -> ( I ` S ) e. ~P B ) | 
						
							| 10 | 9 | elpwid |  |-  ( ph -> ( I ` S ) C_ B ) | 
						
							| 11 |  | sseqin2 |  |-  ( ( I ` S ) C_ B <-> ( B i^i ( I ` S ) ) = ( I ` S ) ) | 
						
							| 12 | 10 11 | sylib |  |-  ( ph -> ( B i^i ( I ` S ) ) = ( I ` S ) ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ x e. B ) -> I F N ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ x e. B ) -> x e. B ) | 
						
							| 15 | 4 | adantr |  |-  ( ( ph /\ x e. B ) -> S e. ~P B ) | 
						
							| 16 | 1 2 13 14 15 | ntrneiel |  |-  ( ( ph /\ x e. B ) -> ( x e. ( I ` S ) <-> S e. ( N ` x ) ) ) | 
						
							| 17 | 16 | rabbidva |  |-  ( ph -> { x e. B | x e. ( I ` S ) } = { x e. B | S e. ( N ` x ) } ) | 
						
							| 18 | 5 12 17 | 3eqtr3a |  |-  ( ph -> ( I ` S ) = { x e. B | S e. ( N ` x ) } ) |