| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | ntrnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 3 |  | ntrnei.r | ⊢ ( 𝜑  →  𝐼 𝐹 𝑁 ) | 
						
							| 4 |  | ntrneifv.s | ⊢ ( 𝜑  →  𝑆  ∈  𝒫  𝐵 ) | 
						
							| 5 |  | dfin5 | ⊢ ( 𝐵  ∩  ( 𝐼 ‘ 𝑆 ) )  =  { 𝑥  ∈  𝐵  ∣  𝑥  ∈  ( 𝐼 ‘ 𝑆 ) } | 
						
							| 6 | 1 2 3 | ntrneiiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 7 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 9 | 8 4 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝑆 )  ∈  𝒫  𝐵 ) | 
						
							| 10 | 9 | elpwid | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝑆 )  ⊆  𝐵 ) | 
						
							| 11 |  | sseqin2 | ⊢ ( ( 𝐼 ‘ 𝑆 )  ⊆  𝐵  ↔  ( 𝐵  ∩  ( 𝐼 ‘ 𝑆 ) )  =  ( 𝐼 ‘ 𝑆 ) ) | 
						
							| 12 | 10 11 | sylib | ⊢ ( 𝜑  →  ( 𝐵  ∩  ( 𝐼 ‘ 𝑆 ) )  =  ( 𝐼 ‘ 𝑆 ) ) | 
						
							| 13 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐼 𝐹 𝑁 ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 15 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑆  ∈  𝒫  𝐵 ) | 
						
							| 16 | 1 2 13 14 15 | ntrneiel | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑆 )  ↔  𝑆  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 17 | 16 | rabbidva | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  𝑥  ∈  ( 𝐼 ‘ 𝑆 ) }  =  { 𝑥  ∈  𝐵  ∣  𝑆  ∈  ( 𝑁 ‘ 𝑥 ) } ) | 
						
							| 18 | 5 12 17 | 3eqtr3a | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝑆 )  =  { 𝑥  ∈  𝐵  ∣  𝑆  ∈  ( 𝑁 ‘ 𝑥 ) } ) |