| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
| 2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
| 3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
| 4 |
|
ntrneifv.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝐵 ) |
| 5 |
|
dfin5 |
⊢ ( 𝐵 ∩ ( 𝐼 ‘ 𝑆 ) ) = { 𝑥 ∈ 𝐵 ∣ 𝑥 ∈ ( 𝐼 ‘ 𝑆 ) } |
| 6 |
1 2 3
|
ntrneiiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 7 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 9 |
8 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑆 ) ∈ 𝒫 𝐵 ) |
| 10 |
9
|
elpwid |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 11 |
|
sseqin2 |
⊢ ( ( 𝐼 ‘ 𝑆 ) ⊆ 𝐵 ↔ ( 𝐵 ∩ ( 𝐼 ‘ 𝑆 ) ) = ( 𝐼 ‘ 𝑆 ) ) |
| 12 |
10 11
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∩ ( 𝐼 ‘ 𝑆 ) ) = ( 𝐼 ‘ 𝑆 ) ) |
| 13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐼 𝐹 𝑁 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ∈ 𝒫 𝐵 ) |
| 16 |
1 2 13 14 15
|
ntrneiel |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑆 ) ↔ 𝑆 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| 17 |
16
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ 𝑥 ∈ ( 𝐼 ‘ 𝑆 ) } = { 𝑥 ∈ 𝐵 ∣ 𝑆 ∈ ( 𝑁 ‘ 𝑥 ) } ) |
| 18 |
5 12 17
|
3eqtr3a |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ 𝑆 ∈ ( 𝑁 ‘ 𝑥 ) } ) |