Metamath Proof Explorer


Theorem ntrneifv4

Description: The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
ntrneifv.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
Assertion ntrneifv4 ( 𝜑 → ( 𝐼𝑆 ) = { 𝑥𝐵𝑆 ∈ ( 𝑁𝑥 ) } )

Proof

Step Hyp Ref Expression
1 ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
3 ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
4 ntrneifv.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
5 dfin5 ( 𝐵 ∩ ( 𝐼𝑆 ) ) = { 𝑥𝐵𝑥 ∈ ( 𝐼𝑆 ) }
6 1 2 3 ntrneiiex ( 𝜑𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
7 elmapi ( 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
8 6 7 syl ( 𝜑𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
9 8 4 ffvelrnd ( 𝜑 → ( 𝐼𝑆 ) ∈ 𝒫 𝐵 )
10 9 elpwid ( 𝜑 → ( 𝐼𝑆 ) ⊆ 𝐵 )
11 sseqin2 ( ( 𝐼𝑆 ) ⊆ 𝐵 ↔ ( 𝐵 ∩ ( 𝐼𝑆 ) ) = ( 𝐼𝑆 ) )
12 10 11 sylib ( 𝜑 → ( 𝐵 ∩ ( 𝐼𝑆 ) ) = ( 𝐼𝑆 ) )
13 3 adantr ( ( 𝜑𝑥𝐵 ) → 𝐼 𝐹 𝑁 )
14 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
15 4 adantr ( ( 𝜑𝑥𝐵 ) → 𝑆 ∈ 𝒫 𝐵 )
16 1 2 13 14 15 ntrneiel ( ( 𝜑𝑥𝐵 ) → ( 𝑥 ∈ ( 𝐼𝑆 ) ↔ 𝑆 ∈ ( 𝑁𝑥 ) ) )
17 16 rabbidva ( 𝜑 → { 𝑥𝐵𝑥 ∈ ( 𝐼𝑆 ) } = { 𝑥𝐵𝑆 ∈ ( 𝑁𝑥 ) } )
18 5 12 17 3eqtr3a ( 𝜑 → ( 𝐼𝑆 ) = { 𝑥𝐵𝑆 ∈ ( 𝑁𝑥 ) } )