Step |
Hyp |
Ref |
Expression |
1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
4 |
|
ntrneiel2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
ntrneiel2.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝐵 ) |
6 |
1 2 3
|
ntrneiiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
7 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
9 |
8 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑆 ) ∈ 𝒫 𝐵 ) |
10 |
1 2 3 4 9
|
ntrneiel |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑆 ) ) ↔ ( 𝐼 ‘ 𝑆 ) ∈ ( 𝑁 ‘ 𝑋 ) ) ) |
11 |
1 2 3 5
|
ntrneifv4 |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑆 ) = { 𝑦 ∈ 𝐵 ∣ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) } ) |
12 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) } |
13 |
11 12
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑆 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) } ) |
14 |
13
|
eleq1d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑆 ) ∈ ( 𝑁 ‘ 𝑋 ) ↔ { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) } ∈ ( 𝑁 ‘ 𝑋 ) ) ) |
15 |
|
clabel |
⊢ ( { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) } ∈ ( 𝑁 ‘ 𝑋 ) ↔ ∃ 𝑢 ( 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
16 |
|
df-rex |
⊢ ( ∃ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ∀ 𝑦 ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ↔ ∃ 𝑢 ( 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
17 |
15 16
|
bitr4i |
⊢ ( { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) } ∈ ( 𝑁 ‘ 𝑋 ) ↔ ∃ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ∀ 𝑦 ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) |
18 |
|
ibar |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) |
19 |
18
|
bibi2d |
⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝑦 ∈ 𝑢 ↔ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
20 |
19
|
ralbiia |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 ∈ 𝑢 ↔ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) |
21 |
|
ssv |
⊢ 𝐵 ⊆ V |
22 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) → 𝐵 ⊆ V ) |
23 |
|
vex |
⊢ 𝑦 ∈ V |
24 |
|
eldif |
⊢ ( 𝑦 ∈ ( V ∖ 𝐵 ) ↔ ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
25 |
23 24
|
mpbiran |
⊢ ( 𝑦 ∈ ( V ∖ 𝐵 ) ↔ ¬ 𝑦 ∈ 𝐵 ) |
26 |
1 2 3
|
ntrneinex |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |
27 |
|
elmapi |
⊢ ( 𝑁 ∈ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 ) |
29 |
28 4
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝒫 𝒫 𝐵 ) |
30 |
29
|
elpwid |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ) |
31 |
30
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) → 𝑢 ∈ 𝒫 𝐵 ) |
32 |
31
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) → 𝑢 ⊆ 𝐵 ) |
33 |
32
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) → ( 𝑦 ∈ 𝑢 → 𝑦 ∈ 𝐵 ) ) |
34 |
33
|
con3dimp |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) ∧ ¬ 𝑦 ∈ 𝐵 ) → ¬ 𝑦 ∈ 𝑢 ) |
35 |
|
pm3.14 |
⊢ ( ( ¬ 𝑦 ∈ 𝐵 ∨ ¬ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) → ¬ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) |
36 |
35
|
orcs |
⊢ ( ¬ 𝑦 ∈ 𝐵 → ¬ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) ∧ ¬ 𝑦 ∈ 𝐵 ) → ¬ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) |
38 |
34 37
|
2falsed |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) ∧ ¬ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) |
39 |
38
|
ex |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) → ( ¬ 𝑦 ∈ 𝐵 → ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
40 |
25 39
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) → ( 𝑦 ∈ ( V ∖ 𝐵 ) → ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
41 |
40
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) → ∀ 𝑦 ∈ ( V ∖ 𝐵 ) ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) |
42 |
22 41
|
raldifeq |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ V ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
43 |
20 42
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 ∈ 𝑢 ↔ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ V ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
44 |
|
ralv |
⊢ ( ∀ 𝑦 ∈ V ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) |
45 |
43 44
|
bitr2di |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ) → ( ∀ 𝑦 ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ∈ 𝑢 ↔ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) |
46 |
45
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ∀ 𝑦 ( 𝑦 ∈ 𝑢 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ↔ ∃ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( 𝑦 ∈ 𝑢 ↔ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) |
47 |
17 46
|
syl5bb |
⊢ ( 𝜑 → ( { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) } ∈ ( 𝑁 ‘ 𝑋 ) ↔ ∃ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( 𝑦 ∈ 𝑢 ↔ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) |
48 |
10 14 47
|
3bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐼 ‘ ( 𝐼 ‘ 𝑆 ) ) ↔ ∃ 𝑢 ∈ ( 𝑁 ‘ 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( 𝑦 ∈ 𝑢 ↔ 𝑆 ∈ ( 𝑁 ‘ 𝑦 ) ) ) ) |