| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | ntrnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 3 |  | ntrnei.r | ⊢ ( 𝜑  →  𝐼 𝐹 𝑁 ) | 
						
							| 4 |  | ntrneiel2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | ntrneiel2.s | ⊢ ( 𝜑  →  𝑆  ∈  𝒫  𝐵 ) | 
						
							| 6 | 1 2 3 | ntrneiiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 7 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 9 | 8 5 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝑆 )  ∈  𝒫  𝐵 ) | 
						
							| 10 | 1 2 3 4 9 | ntrneiel | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐼 ‘ ( 𝐼 ‘ 𝑆 ) )  ↔  ( 𝐼 ‘ 𝑆 )  ∈  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 11 | 1 2 3 5 | ntrneifv4 | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝑆 )  =  { 𝑦  ∈  𝐵  ∣  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) } ) | 
						
							| 12 |  | df-rab | ⊢ { 𝑦  ∈  𝐵  ∣  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) } | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝑆 )  =  { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) } ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 𝑆 )  ∈  ( 𝑁 ‘ 𝑋 )  ↔  { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) }  ∈  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 15 |  | clabel | ⊢ ( { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) }  ∈  ( 𝑁 ‘ 𝑋 )  ↔  ∃ 𝑢 ( 𝑢  ∈  ( 𝑁 ‘ 𝑋 )  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 16 |  | df-rex | ⊢ ( ∃ 𝑢  ∈  ( 𝑁 ‘ 𝑋 ) ∀ 𝑦 ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) )  ↔  ∃ 𝑢 ( 𝑢  ∈  ( 𝑁 ‘ 𝑋 )  ∧  ∀ 𝑦 ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 17 | 15 16 | bitr4i | ⊢ ( { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) }  ∈  ( 𝑁 ‘ 𝑋 )  ↔  ∃ 𝑢  ∈  ( 𝑁 ‘ 𝑋 ) ∀ 𝑦 ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 18 |  | ibar | ⊢ ( 𝑦  ∈  𝐵  →  ( 𝑆  ∈  ( 𝑁 ‘ 𝑦 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 19 | 18 | bibi2d | ⊢ ( 𝑦  ∈  𝐵  →  ( ( 𝑦  ∈  𝑢  ↔  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) )  ↔  ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 20 | 19 | ralbiia | ⊢ ( ∀ 𝑦  ∈  𝐵 ( 𝑦  ∈  𝑢  ↔  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 21 |  | ssv | ⊢ 𝐵  ⊆  V | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  →  𝐵  ⊆  V ) | 
						
							| 23 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 24 |  | eldif | ⊢ ( 𝑦  ∈  ( V  ∖  𝐵 )  ↔  ( 𝑦  ∈  V  ∧  ¬  𝑦  ∈  𝐵 ) ) | 
						
							| 25 | 23 24 | mpbiran | ⊢ ( 𝑦  ∈  ( V  ∖  𝐵 )  ↔  ¬  𝑦  ∈  𝐵 ) | 
						
							| 26 | 1 2 3 | ntrneinex | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) | 
						
							| 27 |  | elmapi | ⊢ ( 𝑁  ∈  ( 𝒫  𝒫  𝐵  ↑m  𝐵 )  →  𝑁 : 𝐵 ⟶ 𝒫  𝒫  𝐵 ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝜑  →  𝑁 : 𝐵 ⟶ 𝒫  𝒫  𝐵 ) | 
						
							| 29 | 28 4 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑋 )  ∈  𝒫  𝒫  𝐵 ) | 
						
							| 30 | 29 | elpwid | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑋 )  ⊆  𝒫  𝐵 ) | 
						
							| 31 | 30 | sselda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  →  𝑢  ∈  𝒫  𝐵 ) | 
						
							| 32 | 31 | elpwid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  →  𝑢  ⊆  𝐵 ) | 
						
							| 33 | 32 | sseld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  →  ( 𝑦  ∈  𝑢  →  𝑦  ∈  𝐵 ) ) | 
						
							| 34 | 33 | con3dimp | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  ∧  ¬  𝑦  ∈  𝐵 )  →  ¬  𝑦  ∈  𝑢 ) | 
						
							| 35 |  | pm3.14 | ⊢ ( ( ¬  𝑦  ∈  𝐵  ∨  ¬  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) )  →  ¬  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 36 | 35 | orcs | ⊢ ( ¬  𝑦  ∈  𝐵  →  ¬  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  ∧  ¬  𝑦  ∈  𝐵 )  →  ¬  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 38 | 34 37 | 2falsed | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  ∧  ¬  𝑦  ∈  𝐵 )  →  ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 39 | 38 | ex | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  →  ( ¬  𝑦  ∈  𝐵  →  ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 40 | 25 39 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  →  ( 𝑦  ∈  ( V  ∖  𝐵 )  →  ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 41 | 40 | ralrimiv | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  →  ∀ 𝑦  ∈  ( V  ∖  𝐵 ) ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 42 | 22 41 | raldifeq | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) )  ↔  ∀ 𝑦  ∈  V ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 43 | 20 42 | bitrid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑦  ∈  𝑢  ↔  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  V ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 44 |  | ralv | ⊢ ( ∀ 𝑦  ∈  V ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 45 | 43 44 | bitr2di | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑁 ‘ 𝑋 ) )  →  ( ∀ 𝑦 ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑦  ∈  𝑢  ↔  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 46 | 45 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑢  ∈  ( 𝑁 ‘ 𝑋 ) ∀ 𝑦 ( 𝑦  ∈  𝑢  ↔  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) )  ↔  ∃ 𝑢  ∈  ( 𝑁 ‘ 𝑋 ) ∀ 𝑦  ∈  𝐵 ( 𝑦  ∈  𝑢  ↔  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 47 | 17 46 | bitrid | ⊢ ( 𝜑  →  ( { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) }  ∈  ( 𝑁 ‘ 𝑋 )  ↔  ∃ 𝑢  ∈  ( 𝑁 ‘ 𝑋 ) ∀ 𝑦  ∈  𝐵 ( 𝑦  ∈  𝑢  ↔  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 48 | 10 14 47 | 3bitrd | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐼 ‘ ( 𝐼 ‘ 𝑆 ) )  ↔  ∃ 𝑢  ∈  ( 𝑁 ‘ 𝑋 ) ∀ 𝑦  ∈  𝐵 ( 𝑦  ∈  𝑢  ↔  𝑆  ∈  ( 𝑁 ‘ 𝑦 ) ) ) ) |