Metamath Proof Explorer


Theorem ntrneifv4

Description: The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
ntrneifv.s φ S 𝒫 B
Assertion ntrneifv4 φ I S = x B | S N x

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 ntrneifv.s φ S 𝒫 B
5 dfin5 B I S = x B | x I S
6 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
7 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
8 6 7 syl φ I : 𝒫 B 𝒫 B
9 8 4 ffvelrnd φ I S 𝒫 B
10 9 elpwid φ I S B
11 sseqin2 I S B B I S = I S
12 10 11 sylib φ B I S = I S
13 3 adantr φ x B I F N
14 simpr φ x B x B
15 4 adantr φ x B S 𝒫 B
16 1 2 13 14 15 ntrneiel φ x B x I S S N x
17 16 rabbidva φ x B | x I S = x B | S N x
18 5 12 17 3eqtr3a φ I S = x B | S N x