| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | ntrnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 3 |  | ntrnei.r | ⊢ ( 𝜑  →  𝐼 𝐹 𝑁 ) | 
						
							| 4 |  | ntrnei.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  𝐼 𝐹 𝑁 ) | 
						
							| 6 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 8 | 1 2 5 6 7 | ntrneiel | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝑋  ∈  ( 𝐼 ‘ 𝑠 )  ↔  𝑠  ∈  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 9 | 8 | notbid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ¬  𝑋  ∈  ( 𝐼 ‘ 𝑠 )  ↔  ¬  𝑠  ∈  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 10 | 9 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  𝒫  𝐵 ¬  𝑋  ∈  ( 𝐼 ‘ 𝑠 )  ↔  ∃ 𝑠  ∈  𝒫  𝐵 ¬  𝑠  ∈  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 11 | 1 2 3 | ntrneinex | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) | 
						
							| 12 |  | elmapi | ⊢ ( 𝑁  ∈  ( 𝒫  𝒫  𝐵  ↑m  𝐵 )  →  𝑁 : 𝐵 ⟶ 𝒫  𝒫  𝐵 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  𝑁 : 𝐵 ⟶ 𝒫  𝒫  𝐵 ) | 
						
							| 14 | 13 4 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑋 )  ∈  𝒫  𝒫  𝐵 ) | 
						
							| 15 | 14 | elpwid | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑋 )  ⊆  𝒫  𝐵 ) | 
						
							| 16 |  | biortn | ⊢ ( ( 𝑁 ‘ 𝑋 )  ⊆  𝒫  𝐵  →  ( ¬  𝒫  𝐵  ⊆  ( 𝑁 ‘ 𝑋 )  ↔  ( ¬  ( 𝑁 ‘ 𝑋 )  ⊆  𝒫  𝐵  ∨  ¬  𝒫  𝐵  ⊆  ( 𝑁 ‘ 𝑋 ) ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  ( ¬  𝒫  𝐵  ⊆  ( 𝑁 ‘ 𝑋 )  ↔  ( ¬  ( 𝑁 ‘ 𝑋 )  ⊆  𝒫  𝐵  ∨  ¬  𝒫  𝐵  ⊆  ( 𝑁 ‘ 𝑋 ) ) ) ) | 
						
							| 18 |  | df-rex | ⊢ ( ∃ 𝑠  ∈  𝒫  𝐵 ¬  𝑠  ∈  ( 𝑁 ‘ 𝑋 )  ↔  ∃ 𝑠 ( 𝑠  ∈  𝒫  𝐵  ∧  ¬  𝑠  ∈  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 19 |  | nss | ⊢ ( ¬  𝒫  𝐵  ⊆  ( 𝑁 ‘ 𝑋 )  ↔  ∃ 𝑠 ( 𝑠  ∈  𝒫  𝐵  ∧  ¬  𝑠  ∈  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 20 | 18 19 | bitr4i | ⊢ ( ∃ 𝑠  ∈  𝒫  𝐵 ¬  𝑠  ∈  ( 𝑁 ‘ 𝑋 )  ↔  ¬  𝒫  𝐵  ⊆  ( 𝑁 ‘ 𝑋 ) ) | 
						
							| 21 |  | df-ne | ⊢ ( ( 𝑁 ‘ 𝑋 )  ≠  𝒫  𝐵  ↔  ¬  ( 𝑁 ‘ 𝑋 )  =  𝒫  𝐵 ) | 
						
							| 22 |  | ianor | ⊢ ( ¬  ( ( 𝑁 ‘ 𝑋 )  ⊆  𝒫  𝐵  ∧  𝒫  𝐵  ⊆  ( 𝑁 ‘ 𝑋 ) )  ↔  ( ¬  ( 𝑁 ‘ 𝑋 )  ⊆  𝒫  𝐵  ∨  ¬  𝒫  𝐵  ⊆  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 23 |  | eqss | ⊢ ( ( 𝑁 ‘ 𝑋 )  =  𝒫  𝐵  ↔  ( ( 𝑁 ‘ 𝑋 )  ⊆  𝒫  𝐵  ∧  𝒫  𝐵  ⊆  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 24 | 22 23 | xchnxbir | ⊢ ( ¬  ( 𝑁 ‘ 𝑋 )  =  𝒫  𝐵  ↔  ( ¬  ( 𝑁 ‘ 𝑋 )  ⊆  𝒫  𝐵  ∨  ¬  𝒫  𝐵  ⊆  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 25 | 21 24 | bitri | ⊢ ( ( 𝑁 ‘ 𝑋 )  ≠  𝒫  𝐵  ↔  ( ¬  ( 𝑁 ‘ 𝑋 )  ⊆  𝒫  𝐵  ∨  ¬  𝒫  𝐵  ⊆  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 26 | 17 20 25 | 3bitr4g | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  𝒫  𝐵 ¬  𝑠  ∈  ( 𝑁 ‘ 𝑋 )  ↔  ( 𝑁 ‘ 𝑋 )  ≠  𝒫  𝐵 ) ) | 
						
							| 27 | 10 26 | bitrd | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  𝒫  𝐵 ¬  𝑋  ∈  ( 𝐼 ‘ 𝑠 )  ↔  ( 𝑁 ‘ 𝑋 )  ≠  𝒫  𝐵 ) ) |