| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
| 2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
| 3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
| 4 |
|
ntrnei.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐼 𝐹 𝑁 ) |
| 6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 8 |
1 2 5 6 7
|
ntrneiel |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑋 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ) ) |
| 9 |
8
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ¬ 𝑋 ∈ ( 𝐼 ‘ 𝑠 ) ↔ ¬ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ) ) |
| 10 |
9
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ ( 𝐼 ‘ 𝑠 ) ↔ ∃ 𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ) ) |
| 11 |
1 2 3
|
ntrneinex |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |
| 12 |
|
elmapi |
⊢ ( 𝑁 ∈ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 ) |
| 14 |
13 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝒫 𝒫 𝐵 ) |
| 15 |
14
|
elpwid |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ) |
| 16 |
|
biortn |
⊢ ( ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 → ( ¬ 𝒫 𝐵 ⊆ ( 𝑁 ‘ 𝑋 ) ↔ ( ¬ ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ¬ 𝒫 𝐵 ⊆ ( 𝑁 ‘ 𝑋 ) ↔ ( ¬ ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 18 |
|
df-rex |
⊢ ( ∃ 𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ↔ ∃ 𝑠 ( 𝑠 ∈ 𝒫 𝐵 ∧ ¬ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ) ) |
| 19 |
|
nss |
⊢ ( ¬ 𝒫 𝐵 ⊆ ( 𝑁 ‘ 𝑋 ) ↔ ∃ 𝑠 ( 𝑠 ∈ 𝒫 𝐵 ∧ ¬ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ) ) |
| 20 |
18 19
|
bitr4i |
⊢ ( ∃ 𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ↔ ¬ 𝒫 𝐵 ⊆ ( 𝑁 ‘ 𝑋 ) ) |
| 21 |
|
df-ne |
⊢ ( ( 𝑁 ‘ 𝑋 ) ≠ 𝒫 𝐵 ↔ ¬ ( 𝑁 ‘ 𝑋 ) = 𝒫 𝐵 ) |
| 22 |
|
ianor |
⊢ ( ¬ ( ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ ( 𝑁 ‘ 𝑋 ) ) ↔ ( ¬ ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ ( 𝑁 ‘ 𝑋 ) ) ) |
| 23 |
|
eqss |
⊢ ( ( 𝑁 ‘ 𝑋 ) = 𝒫 𝐵 ↔ ( ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ ( 𝑁 ‘ 𝑋 ) ) ) |
| 24 |
22 23
|
xchnxbir |
⊢ ( ¬ ( 𝑁 ‘ 𝑋 ) = 𝒫 𝐵 ↔ ( ¬ ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ ( 𝑁 ‘ 𝑋 ) ) ) |
| 25 |
21 24
|
bitri |
⊢ ( ( 𝑁 ‘ 𝑋 ) ≠ 𝒫 𝐵 ↔ ( ¬ ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ ( 𝑁 ‘ 𝑋 ) ) ) |
| 26 |
17 20 25
|
3bitr4g |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ↔ ( 𝑁 ‘ 𝑋 ) ≠ 𝒫 𝐵 ) ) |
| 27 |
10 26
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ ( 𝐼 ‘ 𝑠 ) ↔ ( 𝑁 ‘ 𝑋 ) ≠ 𝒫 𝐵 ) ) |