Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Richard Penner Exploring Topology via Seifert and Threlfall Generic Pseudoclosure Spaces, Pseudointerior Spaces, and Pseudoneighborhoods ntrneineine1  
				
		 
		
			
		 
		Description:   If (pseudo-)interior and (pseudo-)neighborhood functions are related
         by the operator, F  , then conditions equal to claiming that for
         every point, at not all subsets are (pseudo-)neighborboods hold
         equally.  (Contributed by RP , 1-Jun-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ntrnei.o   ⊢   O  =    i  ∈  V  ,  j  ∈  V  ⟼    k  ∈    𝒫  j    i   ⟼    l  ∈  j  ⟼   m  ∈  i  |   l  ∈   k  ⁡  m                     
					 
					
						ntrnei.f   ⊢   F  =   𝒫  B    O  B      
					 
					
						ntrnei.r    ⊢   φ   →  I  F  N      
					 
				
					Assertion 
					ntrneineine1    ⊢   φ   →    ∀  x  ∈  B   ∃  s  ∈   𝒫  B     ¬   x  ∈   I  ⁡  s           ↔   ∀  x  ∈  B    N  ⁡  x   ≠   𝒫  B              
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ntrnei.o  ⊢   O  =    i  ∈  V  ,  j  ∈  V  ⟼    k  ∈    𝒫  j    i   ⟼    l  ∈  j  ⟼   m  ∈  i  |   l  ∈   k  ⁡  m                     
						
							2 
								
							 
							ntrnei.f  ⊢   F  =   𝒫  B    O  B      
						
							3 
								
							 
							ntrnei.r   ⊢   φ   →  I  F  N      
						
							4 
								3 
							 
							adantr   ⊢    φ   ∧   x  ∈  B     →  I  F  N      
						
							5 
								
							 
							simpr   ⊢    φ   ∧   x  ∈  B     →   x  ∈  B         
						
							6 
								1  2  4  5 
							 
							ntrneineine1lem   ⊢    φ   ∧   x  ∈  B     →    ∃  s  ∈   𝒫  B     ¬   x  ∈   I  ⁡  s         ↔    N  ⁡  x   ≠   𝒫  B            
						
							7 
								6 
							 
							ralbidva   ⊢   φ   →    ∀  x  ∈  B   ∃  s  ∈   𝒫  B     ¬   x  ∈   I  ⁡  s           ↔   ∀  x  ∈  B    N  ⁡  x   ≠   𝒫  B