Metamath Proof Explorer


Theorem ntrneicls00

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneicls00 φ I B = B x B B N x

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
5 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
6 4 5 syl φ I : 𝒫 B 𝒫 B
7 1 2 3 ntrneibex φ B V
8 pwidg B V B 𝒫 B
9 7 8 syl φ B 𝒫 B
10 6 9 ffvelrnd φ I B 𝒫 B
11 10 elpwid φ I B B
12 eqss I B = B I B B B I B
13 dfss3 B I B x B x I B
14 13 anbi2i I B B B I B I B B x B x I B
15 12 14 bitri I B = B I B B x B x I B
16 15 a1i φ I B = B I B B x B x I B
17 11 16 mpbirand φ I B = B x B x I B
18 3 adantr φ x B I F N
19 simpr φ x B x B
20 9 adantr φ x B B 𝒫 B
21 1 2 18 19 20 ntrneiel φ x B x I B B N x
22 21 ralbidva φ x B x I B x B B N x
23 17 22 bitrd φ I B = B x B B N x