Metamath Proof Explorer


Theorem ntrneicls00

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021)

Ref Expression
Hypotheses ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
Assertion ntrneicls00 ( 𝜑 → ( ( 𝐼𝐵 ) = 𝐵 ↔ ∀ 𝑥𝐵 𝐵 ∈ ( 𝑁𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
3 ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
4 1 2 3 ntrneiiex ( 𝜑𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
5 elmapi ( 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
6 4 5 syl ( 𝜑𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
7 1 2 3 ntrneibex ( 𝜑𝐵 ∈ V )
8 pwidg ( 𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵 )
9 7 8 syl ( 𝜑𝐵 ∈ 𝒫 𝐵 )
10 6 9 ffvelrnd ( 𝜑 → ( 𝐼𝐵 ) ∈ 𝒫 𝐵 )
11 10 elpwid ( 𝜑 → ( 𝐼𝐵 ) ⊆ 𝐵 )
12 eqss ( ( 𝐼𝐵 ) = 𝐵 ↔ ( ( 𝐼𝐵 ) ⊆ 𝐵𝐵 ⊆ ( 𝐼𝐵 ) ) )
13 dfss3 ( 𝐵 ⊆ ( 𝐼𝐵 ) ↔ ∀ 𝑥𝐵 𝑥 ∈ ( 𝐼𝐵 ) )
14 13 anbi2i ( ( ( 𝐼𝐵 ) ⊆ 𝐵𝐵 ⊆ ( 𝐼𝐵 ) ) ↔ ( ( 𝐼𝐵 ) ⊆ 𝐵 ∧ ∀ 𝑥𝐵 𝑥 ∈ ( 𝐼𝐵 ) ) )
15 12 14 bitri ( ( 𝐼𝐵 ) = 𝐵 ↔ ( ( 𝐼𝐵 ) ⊆ 𝐵 ∧ ∀ 𝑥𝐵 𝑥 ∈ ( 𝐼𝐵 ) ) )
16 15 a1i ( 𝜑 → ( ( 𝐼𝐵 ) = 𝐵 ↔ ( ( 𝐼𝐵 ) ⊆ 𝐵 ∧ ∀ 𝑥𝐵 𝑥 ∈ ( 𝐼𝐵 ) ) ) )
17 11 16 mpbirand ( 𝜑 → ( ( 𝐼𝐵 ) = 𝐵 ↔ ∀ 𝑥𝐵 𝑥 ∈ ( 𝐼𝐵 ) ) )
18 3 adantr ( ( 𝜑𝑥𝐵 ) → 𝐼 𝐹 𝑁 )
19 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
20 9 adantr ( ( 𝜑𝑥𝐵 ) → 𝐵 ∈ 𝒫 𝐵 )
21 1 2 18 19 20 ntrneiel ( ( 𝜑𝑥𝐵 ) → ( 𝑥 ∈ ( 𝐼𝐵 ) ↔ 𝐵 ∈ ( 𝑁𝑥 ) ) )
22 21 ralbidva ( 𝜑 → ( ∀ 𝑥𝐵 𝑥 ∈ ( 𝐼𝐵 ) ↔ ∀ 𝑥𝐵 𝐵 ∈ ( 𝑁𝑥 ) ) )
23 17 22 bitrd ( 𝜑 → ( ( 𝐼𝐵 ) = 𝐵 ↔ ∀ 𝑥𝐵 𝐵 ∈ ( 𝑁𝑥 ) ) )