Step |
Hyp |
Ref |
Expression |
1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
4 |
1 2 3
|
ntrneiiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
5 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
7 |
1 2 3
|
ntrneibex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
8 |
|
pwidg |
⊢ ( 𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵 ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝐵 ) |
10 |
6 9
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝐵 ) ∈ 𝒫 𝐵 ) |
11 |
10
|
elpwid |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝐵 ) ⊆ 𝐵 ) |
12 |
|
eqss |
⊢ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ↔ ( ( 𝐼 ‘ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( 𝐼 ‘ 𝐵 ) ) ) |
13 |
|
dfss3 |
⊢ ( 𝐵 ⊆ ( 𝐼 ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 𝑥 ∈ ( 𝐼 ‘ 𝐵 ) ) |
14 |
13
|
anbi2i |
⊢ ( ( ( 𝐼 ‘ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( 𝐼 ‘ 𝐵 ) ) ↔ ( ( 𝐼 ‘ 𝐵 ) ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 ∈ ( 𝐼 ‘ 𝐵 ) ) ) |
15 |
12 14
|
bitri |
⊢ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ↔ ( ( 𝐼 ‘ 𝐵 ) ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 ∈ ( 𝐼 ‘ 𝐵 ) ) ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ↔ ( ( 𝐼 ‘ 𝐵 ) ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 ∈ ( 𝐼 ‘ 𝐵 ) ) ) ) |
17 |
11 16
|
mpbirand |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝑥 ∈ ( 𝐼 ‘ 𝐵 ) ) ) |
18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐼 𝐹 𝑁 ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
20 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 ∈ 𝒫 𝐵 ) |
21 |
1 2 18 19 20
|
ntrneiel |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝐵 ) ↔ 𝐵 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
22 |
21
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝑥 ∈ ( 𝐼 ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 𝐵 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
23 |
17 22
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐵 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |