| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | ntrnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 3 |  | ntrnei.r | ⊢ ( 𝜑  →  𝐼 𝐹 𝑁 ) | 
						
							| 4 | 1 2 3 | ntrneiiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 5 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 7 | 1 2 3 | ntrneibex | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 8 |  | pwidg | ⊢ ( 𝐵  ∈  V  →  𝐵  ∈  𝒫  𝐵 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  𝐵  ∈  𝒫  𝐵 ) | 
						
							| 10 | 6 9 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝐵 )  ∈  𝒫  𝐵 ) | 
						
							| 11 | 10 | elpwid | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝐵 )  ⊆  𝐵 ) | 
						
							| 12 |  | eqss | ⊢ ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ↔  ( ( 𝐼 ‘ 𝐵 )  ⊆  𝐵  ∧  𝐵  ⊆  ( 𝐼 ‘ 𝐵 ) ) ) | 
						
							| 13 |  | dfss3 | ⊢ ( 𝐵  ⊆  ( 𝐼 ‘ 𝐵 )  ↔  ∀ 𝑥  ∈  𝐵 𝑥  ∈  ( 𝐼 ‘ 𝐵 ) ) | 
						
							| 14 | 13 | anbi2i | ⊢ ( ( ( 𝐼 ‘ 𝐵 )  ⊆  𝐵  ∧  𝐵  ⊆  ( 𝐼 ‘ 𝐵 ) )  ↔  ( ( 𝐼 ‘ 𝐵 )  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐵 𝑥  ∈  ( 𝐼 ‘ 𝐵 ) ) ) | 
						
							| 15 | 12 14 | bitri | ⊢ ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ↔  ( ( 𝐼 ‘ 𝐵 )  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐵 𝑥  ∈  ( 𝐼 ‘ 𝐵 ) ) ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ↔  ( ( 𝐼 ‘ 𝐵 )  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐵 𝑥  ∈  ( 𝐼 ‘ 𝐵 ) ) ) ) | 
						
							| 17 | 11 16 | mpbirand | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ↔  ∀ 𝑥  ∈  𝐵 𝑥  ∈  ( 𝐼 ‘ 𝐵 ) ) ) | 
						
							| 18 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐼 𝐹 𝑁 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 20 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐵  ∈  𝒫  𝐵 ) | 
						
							| 21 | 1 2 18 19 20 | ntrneiel | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝐵 )  ↔  𝐵  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 22 | 21 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐵 𝑥  ∈  ( 𝐼 ‘ 𝐵 )  ↔  ∀ 𝑥  ∈  𝐵 𝐵  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 23 | 17 22 | bitrd | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ↔  ∀ 𝑥  ∈  𝐵 𝐵  ∈  ( 𝑁 ‘ 𝑥 ) ) ) |