Metamath Proof Explorer


Theorem ntrneicls11

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021)

Ref Expression
Hypotheses ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
Assertion ntrneicls11 ( 𝜑 → ( ( 𝐼 ‘ ∅ ) = ∅ ↔ ∀ 𝑥𝐵 ¬ ∅ ∈ ( 𝑁𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
3 ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
4 1 2 3 ntrneiiex ( 𝜑𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
5 elmapi ( 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
6 4 5 syl ( 𝜑𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
7 0elpw ∅ ∈ 𝒫 𝐵
8 7 a1i ( 𝜑 → ∅ ∈ 𝒫 𝐵 )
9 6 8 ffvelrnd ( 𝜑 → ( 𝐼 ‘ ∅ ) ∈ 𝒫 𝐵 )
10 9 elpwid ( 𝜑 → ( 𝐼 ‘ ∅ ) ⊆ 𝐵 )
11 reldisj ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ↔ ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵𝐵 ) ) )
12 10 11 syl ( 𝜑 → ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ↔ ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵𝐵 ) ) )
13 12 bicomd ( 𝜑 → ( ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵𝐵 ) ↔ ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ) )
14 difid ( 𝐵𝐵 ) = ∅
15 14 sseq2i ( ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵𝐵 ) ↔ ( 𝐼 ‘ ∅ ) ⊆ ∅ )
16 ss0b ( ( 𝐼 ‘ ∅ ) ⊆ ∅ ↔ ( 𝐼 ‘ ∅ ) = ∅ )
17 15 16 bitri ( ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵𝐵 ) ↔ ( 𝐼 ‘ ∅ ) = ∅ )
18 disjr ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥𝐵 ¬ 𝑥 ∈ ( 𝐼 ‘ ∅ ) )
19 13 17 18 3bitr3g ( 𝜑 → ( ( 𝐼 ‘ ∅ ) = ∅ ↔ ∀ 𝑥𝐵 ¬ 𝑥 ∈ ( 𝐼 ‘ ∅ ) ) )
20 3 adantr ( ( 𝜑𝑥𝐵 ) → 𝐼 𝐹 𝑁 )
21 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
22 7 a1i ( ( 𝜑𝑥𝐵 ) → ∅ ∈ 𝒫 𝐵 )
23 1 2 20 21 22 ntrneiel ( ( 𝜑𝑥𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ ∅ ) ↔ ∅ ∈ ( 𝑁𝑥 ) ) )
24 23 notbid ( ( 𝜑𝑥𝐵 ) → ( ¬ 𝑥 ∈ ( 𝐼 ‘ ∅ ) ↔ ¬ ∅ ∈ ( 𝑁𝑥 ) ) )
25 24 ralbidva ( 𝜑 → ( ∀ 𝑥𝐵 ¬ 𝑥 ∈ ( 𝐼 ‘ ∅ ) ↔ ∀ 𝑥𝐵 ¬ ∅ ∈ ( 𝑁𝑥 ) ) )
26 19 25 bitrd ( 𝜑 → ( ( 𝐼 ‘ ∅ ) = ∅ ↔ ∀ 𝑥𝐵 ¬ ∅ ∈ ( 𝑁𝑥 ) ) )