| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | ntrnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 3 |  | ntrnei.r | ⊢ ( 𝜑  →  𝐼 𝐹 𝑁 ) | 
						
							| 4 | 1 2 3 | ntrneiiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 5 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 7 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝐵 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ∅  ∈  𝒫  𝐵 ) | 
						
							| 9 | 6 8 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐼 ‘ ∅ )  ∈  𝒫  𝐵 ) | 
						
							| 10 | 9 | elpwid | ⊢ ( 𝜑  →  ( 𝐼 ‘ ∅ )  ⊆  𝐵 ) | 
						
							| 11 |  | reldisj | ⊢ ( ( 𝐼 ‘ ∅ )  ⊆  𝐵  →  ( ( ( 𝐼 ‘ ∅ )  ∩  𝐵 )  =  ∅  ↔  ( 𝐼 ‘ ∅ )  ⊆  ( 𝐵  ∖  𝐵 ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  ( ( ( 𝐼 ‘ ∅ )  ∩  𝐵 )  =  ∅  ↔  ( 𝐼 ‘ ∅ )  ⊆  ( 𝐵  ∖  𝐵 ) ) ) | 
						
							| 13 | 12 | bicomd | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ∅ )  ⊆  ( 𝐵  ∖  𝐵 )  ↔  ( ( 𝐼 ‘ ∅ )  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 14 |  | difid | ⊢ ( 𝐵  ∖  𝐵 )  =  ∅ | 
						
							| 15 | 14 | sseq2i | ⊢ ( ( 𝐼 ‘ ∅ )  ⊆  ( 𝐵  ∖  𝐵 )  ↔  ( 𝐼 ‘ ∅ )  ⊆  ∅ ) | 
						
							| 16 |  | ss0b | ⊢ ( ( 𝐼 ‘ ∅ )  ⊆  ∅  ↔  ( 𝐼 ‘ ∅ )  =  ∅ ) | 
						
							| 17 | 15 16 | bitri | ⊢ ( ( 𝐼 ‘ ∅ )  ⊆  ( 𝐵  ∖  𝐵 )  ↔  ( 𝐼 ‘ ∅ )  =  ∅ ) | 
						
							| 18 |  | disjr | ⊢ ( ( ( 𝐼 ‘ ∅ )  ∩  𝐵 )  =  ∅  ↔  ∀ 𝑥  ∈  𝐵 ¬  𝑥  ∈  ( 𝐼 ‘ ∅ ) ) | 
						
							| 19 | 13 17 18 | 3bitr3g | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ∅ )  =  ∅  ↔  ∀ 𝑥  ∈  𝐵 ¬  𝑥  ∈  ( 𝐼 ‘ ∅ ) ) ) | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐼 𝐹 𝑁 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 22 | 7 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∅  ∈  𝒫  𝐵 ) | 
						
							| 23 | 1 2 20 21 22 | ntrneiel | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( 𝐼 ‘ ∅ )  ↔  ∅  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 24 | 23 | notbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ¬  𝑥  ∈  ( 𝐼 ‘ ∅ )  ↔  ¬  ∅  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 25 | 24 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐵 ¬  𝑥  ∈  ( 𝐼 ‘ ∅ )  ↔  ∀ 𝑥  ∈  𝐵 ¬  ∅  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 26 | 19 25 | bitrd | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ∅ )  =  ∅  ↔  ∀ 𝑥  ∈  𝐵 ¬  ∅  ∈  ( 𝑁 ‘ 𝑥 ) ) ) |