| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
| 2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
| 3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
| 4 |
1 2 3
|
ntrneiiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 5 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 7 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐵 |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 𝒫 𝐵 ) |
| 9 |
6 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐼 ‘ ∅ ) ∈ 𝒫 𝐵 ) |
| 10 |
9
|
elpwid |
⊢ ( 𝜑 → ( 𝐼 ‘ ∅ ) ⊆ 𝐵 ) |
| 11 |
|
reldisj |
⊢ ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ↔ ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵 ∖ 𝐵 ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ↔ ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵 ∖ 𝐵 ) ) ) |
| 13 |
12
|
bicomd |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵 ∖ 𝐵 ) ↔ ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ) ) |
| 14 |
|
difid |
⊢ ( 𝐵 ∖ 𝐵 ) = ∅ |
| 15 |
14
|
sseq2i |
⊢ ( ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵 ∖ 𝐵 ) ↔ ( 𝐼 ‘ ∅ ) ⊆ ∅ ) |
| 16 |
|
ss0b |
⊢ ( ( 𝐼 ‘ ∅ ) ⊆ ∅ ↔ ( 𝐼 ‘ ∅ ) = ∅ ) |
| 17 |
15 16
|
bitri |
⊢ ( ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵 ∖ 𝐵 ) ↔ ( 𝐼 ‘ ∅ ) = ∅ ) |
| 18 |
|
disjr |
⊢ ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝐼 ‘ ∅ ) ) |
| 19 |
13 17 18
|
3bitr3g |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ∅ ) = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝐼 ‘ ∅ ) ) ) |
| 20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐼 𝐹 𝑁 ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 22 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∅ ∈ 𝒫 𝐵 ) |
| 23 |
1 2 20 21 22
|
ntrneiel |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ ∅ ) ↔ ∅ ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| 24 |
23
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ ( 𝐼 ‘ ∅ ) ↔ ¬ ∅ ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| 25 |
24
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝐼 ‘ ∅ ) ↔ ∀ 𝑥 ∈ 𝐵 ¬ ∅ ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| 26 |
19 25
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ∅ ) = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ¬ ∅ ∈ ( 𝑁 ‘ 𝑥 ) ) ) |