Metamath Proof Explorer


Theorem ntrneicls11

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneicls11 φ I = x B ¬ N x

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
5 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
6 4 5 syl φ I : 𝒫 B 𝒫 B
7 0elpw 𝒫 B
8 7 a1i φ 𝒫 B
9 6 8 ffvelrnd φ I 𝒫 B
10 9 elpwid φ I B
11 reldisj I B I B = I B B
12 10 11 syl φ I B = I B B
13 12 bicomd φ I B B I B =
14 difid B B =
15 14 sseq2i I B B I
16 ss0b I I =
17 15 16 bitri I B B I =
18 disjr I B = x B ¬ x I
19 13 17 18 3bitr3g φ I = x B ¬ x I
20 3 adantr φ x B I F N
21 simpr φ x B x B
22 7 a1i φ x B 𝒫 B
23 1 2 20 21 22 ntrneiel φ x B x I N x
24 23 notbid φ x B ¬ x I ¬ N x
25 24 ralbidva φ x B ¬ x I x B ¬ N x
26 19 25 bitrd φ I = x B ¬ N x