Metamath Proof Explorer


Theorem ntrneiiso

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that the interior function is isotonic hold equally. (Contributed by RP, 3-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneiiso φ s 𝒫 B t 𝒫 B s t I s I t x B s 𝒫 B t 𝒫 B s N x s t t N x

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 dfss2 I s I t x x I s x I t
5 4 imbi2i s t I s I t s t x x I s x I t
6 19.21v x s t x I s x I t s t x x I s x I t
7 5 6 bitr4i s t I s I t x s t x I s x I t
8 ax-1 s t x I s x I t x B s t x I s x I t
9 simpll φ s 𝒫 B t 𝒫 B φ
10 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
11 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
12 9 10 11 3syl φ s 𝒫 B t 𝒫 B I : 𝒫 B 𝒫 B
13 simplr φ s 𝒫 B t 𝒫 B s 𝒫 B
14 12 13 ffvelrnd φ s 𝒫 B t 𝒫 B I s 𝒫 B
15 14 elpwid φ s 𝒫 B t 𝒫 B I s B
16 15 sselda φ s 𝒫 B t 𝒫 B x I s x B
17 16 pm2.24d φ s 𝒫 B t 𝒫 B x I s ¬ x B x I t
18 17 ex φ s 𝒫 B t 𝒫 B x I s ¬ x B x I t
19 18 com23 φ s 𝒫 B t 𝒫 B ¬ x B x I s x I t
20 19 a1dd φ s 𝒫 B t 𝒫 B ¬ x B s t x I s x I t
21 idd φ s 𝒫 B t 𝒫 B s t x I s x I t s t x I s x I t
22 20 21 jad φ s 𝒫 B t 𝒫 B x B s t x I s x I t s t x I s x I t
23 8 22 impbid2 φ s 𝒫 B t 𝒫 B s t x I s x I t x B s t x I s x I t
24 23 albidv φ s 𝒫 B t 𝒫 B x s t x I s x I t x x B s t x I s x I t
25 df-ral x B s t x I s x I t x x B s t x I s x I t
26 24 25 bitr4di φ s 𝒫 B t 𝒫 B x s t x I s x I t x B s t x I s x I t
27 3 ad3antrrr φ s 𝒫 B t 𝒫 B x B I F N
28 simpr φ s 𝒫 B t 𝒫 B x B x B
29 simpllr φ s 𝒫 B t 𝒫 B x B s 𝒫 B
30 1 2 27 28 29 ntrneiel φ s 𝒫 B t 𝒫 B x B x I s s N x
31 simplr φ s 𝒫 B t 𝒫 B x B t 𝒫 B
32 1 2 27 28 31 ntrneiel φ s 𝒫 B t 𝒫 B x B x I t t N x
33 30 32 imbi12d φ s 𝒫 B t 𝒫 B x B x I s x I t s N x t N x
34 33 imbi2d φ s 𝒫 B t 𝒫 B x B s t x I s x I t s t s N x t N x
35 impexp s t s N x t N x s t s N x t N x
36 ancomst s t s N x t N x s N x s t t N x
37 35 36 bitr3i s t s N x t N x s N x s t t N x
38 34 37 syl6bb φ s 𝒫 B t 𝒫 B x B s t x I s x I t s N x s t t N x
39 38 ralbidva φ s 𝒫 B t 𝒫 B x B s t x I s x I t x B s N x s t t N x
40 26 39 bitrd φ s 𝒫 B t 𝒫 B x s t x I s x I t x B s N x s t t N x
41 7 40 syl5bb φ s 𝒫 B t 𝒫 B s t I s I t x B s N x s t t N x
42 41 ralbidva φ s 𝒫 B t 𝒫 B s t I s I t t 𝒫 B x B s N x s t t N x
43 ralcom t 𝒫 B x B s N x s t t N x x B t 𝒫 B s N x s t t N x
44 42 43 syl6bb φ s 𝒫 B t 𝒫 B s t I s I t x B t 𝒫 B s N x s t t N x
45 44 ralbidva φ s 𝒫 B t 𝒫 B s t I s I t s 𝒫 B x B t 𝒫 B s N x s t t N x
46 ralcom s 𝒫 B x B t 𝒫 B s N x s t t N x x B s 𝒫 B t 𝒫 B s N x s t t N x
47 45 46 syl6bb φ s 𝒫 B t 𝒫 B s t I s I t x B s 𝒫 B t 𝒫 B s N x s t t N x