| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
| 2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
| 3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
| 4 |
|
df-ss |
⊢ ( ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) |
| 5 |
4
|
imbi2i |
⊢ ( ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝑠 ⊆ 𝑡 → ∀ 𝑥 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) |
| 6 |
|
19.21v |
⊢ ( ∀ 𝑥 ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ( 𝑠 ⊆ 𝑡 → ∀ 𝑥 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) |
| 7 |
5 6
|
bitr4i |
⊢ ( ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑥 ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) |
| 8 |
|
ax-1 |
⊢ ( ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) → ( 𝑥 ∈ 𝐵 → ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) ) |
| 9 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝜑 ) |
| 10 |
1 2 3
|
ntrneiiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 11 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 12 |
9 10 11
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 13 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 14 |
12 13
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 15 |
14
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ 𝑠 ) ⊆ 𝐵 ) |
| 16 |
15
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) → 𝑥 ∈ 𝐵 ) |
| 17 |
16
|
pm2.24d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) |
| 18 |
17
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) |
| 19 |
18
|
com23 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ¬ 𝑥 ∈ 𝐵 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) |
| 20 |
19
|
a1dd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ¬ 𝑥 ∈ 𝐵 → ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) ) |
| 21 |
|
idd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) → ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) ) |
| 22 |
20 21
|
jad |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝑥 ∈ 𝐵 → ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) → ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) ) |
| 23 |
8 22
|
impbid2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) ) ) |
| 24 |
23
|
albidv |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ∀ 𝑥 ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) ) ) |
| 25 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) ) |
| 26 |
24 25
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ∀ 𝑥 ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) ) |
| 27 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐼 𝐹 𝑁 ) |
| 28 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 29 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 30 |
1 2 27 28 29
|
ntrneiel |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| 31 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 32 |
1 2 27 28 31
|
ntrneiel |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ↔ 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| 33 |
30 32
|
imbi12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
| 34 |
33
|
imbi2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ( 𝑠 ⊆ 𝑡 → ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) ) |
| 35 |
|
impexp |
⊢ ( ( ( 𝑠 ⊆ 𝑡 ∧ 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ↔ ( 𝑠 ⊆ 𝑡 → ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
| 36 |
|
ancomst |
⊢ ( ( ( 𝑠 ⊆ 𝑡 ∧ 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ↔ ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| 37 |
35 36
|
bitr3i |
⊢ ( ( 𝑠 ⊆ 𝑡 → ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ↔ ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| 38 |
34 37
|
bitrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
| 39 |
38
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
| 40 |
26 39
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ∀ 𝑥 ( 𝑠 ⊆ 𝑡 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) → 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
| 41 |
7 40
|
bitrid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
| 42 |
41
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
| 43 |
|
ralcom |
⊢ ( ∀ 𝑡 ∈ 𝒫 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| 44 |
42 43
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
| 45 |
44
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑥 ∈ 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
| 46 |
|
ralcom |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑥 ∈ 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| 47 |
45 46
|
bitrdi |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∧ 𝑠 ⊆ 𝑡 ) → 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |