| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | ntrnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 3 |  | ntrnei.r | ⊢ ( 𝜑  →  𝐼 𝐹 𝑁 ) | 
						
							| 4 |  | df-ss | ⊢ ( ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 )  ↔  ∀ 𝑥 ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) | 
						
							| 5 | 4 | imbi2i | ⊢ ( ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ( 𝑠  ⊆  𝑡  →  ∀ 𝑥 ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) | 
						
							| 6 |  | 19.21v | ⊢ ( ∀ 𝑥 ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) )  ↔  ( 𝑠  ⊆  𝑡  →  ∀ 𝑥 ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) | 
						
							| 7 | 5 6 | bitr4i | ⊢ ( ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑥 ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) | 
						
							| 8 |  | ax-1 | ⊢ ( ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) )  →  ( 𝑥  ∈  𝐵  →  ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) ) | 
						
							| 9 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝜑 ) | 
						
							| 10 | 1 2 3 | ntrneiiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 11 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 12 | 9 10 11 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 14 | 12 13 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐼 ‘ 𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 15 | 14 | elpwid | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐼 ‘ 𝑠 )  ⊆  𝐵 ) | 
						
							| 16 | 15 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  ( 𝐼 ‘ 𝑠 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 17 | 16 | pm2.24d | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  ( 𝐼 ‘ 𝑠 ) )  →  ( ¬  𝑥  ∈  𝐵  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) | 
						
							| 18 | 17 | ex | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  ( ¬  𝑥  ∈  𝐵  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) | 
						
							| 19 | 18 | com23 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ¬  𝑥  ∈  𝐵  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) | 
						
							| 20 | 19 | a1dd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ¬  𝑥  ∈  𝐵  →  ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) ) | 
						
							| 21 |  | idd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) )  →  ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) ) | 
						
							| 22 | 20 21 | jad | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( 𝑥  ∈  𝐵  →  ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) )  →  ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) ) | 
						
							| 23 | 8 22 | impbid2 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 24 | 23 | albidv | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ∀ 𝑥 ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 25 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) ) | 
						
							| 26 | 24 25 | bitr4di | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ∀ 𝑥 ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) ) ) ) | 
						
							| 27 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝐼 𝐹 𝑁 ) | 
						
							| 28 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 29 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 30 | 1 2 27 28 29 | ntrneiel | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  ↔  𝑠  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝑡  ∈  𝒫  𝐵 ) | 
						
							| 32 | 1 2 27 28 31 | ntrneiel | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑡 )  ↔  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 33 | 30 32 | imbi12d | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) )  ↔  ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) ) | 
						
							| 34 | 33 | imbi2d | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) )  ↔  ( 𝑠  ⊆  𝑡  →  ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) ) ) | 
						
							| 35 |  | impexp | ⊢ ( ( ( 𝑠  ⊆  𝑡  ∧  𝑠  ∈  ( 𝑁 ‘ 𝑥 ) )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) )  ↔  ( 𝑠  ⊆  𝑡  →  ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) ) | 
						
							| 36 |  | ancomst | ⊢ ( ( ( 𝑠  ⊆  𝑡  ∧  𝑠  ∈  ( 𝑁 ‘ 𝑥 ) )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) )  ↔  ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 37 | 35 36 | bitr3i | ⊢ ( ( 𝑠  ⊆  𝑡  →  ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) )  ↔  ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 38 | 34 37 | bitrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) )  ↔  ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) ) | 
						
							| 39 | 38 | ralbidva | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ∀ 𝑥  ∈  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) ) | 
						
							| 40 | 26 39 | bitrd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ∀ 𝑥 ( 𝑠  ⊆  𝑡  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  ( 𝐼 ‘ 𝑡 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) ) | 
						
							| 41 | 7 40 | bitrid | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) ) | 
						
							| 42 | 41 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑡  ∈  𝒫  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) ) | 
						
							| 43 |  | ralcom | ⊢ ( ∀ 𝑡  ∈  𝒫  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 44 | 42 43 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) ) | 
						
							| 45 | 44 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑥  ∈  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) ) | 
						
							| 46 |  | ralcom | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑥  ∈  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 47 | 45 46 | bitrdi | ⊢ ( 𝜑  →  ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  ∧  𝑠  ⊆  𝑡 )  →  𝑡  ∈  ( 𝑁 ‘ 𝑥 ) ) ) ) |