| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | ntrnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 3 |  | ntrnei.r | ⊢ ( 𝜑  →  𝐼 𝐹 𝑁 ) | 
						
							| 4 | 1 2 3 | ntrneiiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 5 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 7 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐼 ‘ 𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 8 | 7 | elpwid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐼 ‘ 𝑠 )  ⊆  𝐵 ) | 
						
							| 9 | 8 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  ( 𝐼 ‘ 𝑠 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 10 |  | biimt | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝑠  ↔  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝑠 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  ( 𝐼 ‘ 𝑠 ) )  →  ( 𝑥  ∈  𝑠  ↔  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝑠 ) ) ) | 
						
							| 12 | 11 | pm5.74da | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 )  ↔  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝑠 ) ) ) ) | 
						
							| 13 |  | bi2.04 | ⊢ ( ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝑠 ) )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 ) ) ) | 
						
							| 14 | 12 13 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 ) ) ) ) | 
						
							| 15 | 14 | albidv | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ∀ 𝑥 ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 ) ) ) ) | 
						
							| 16 |  | df-ss | ⊢ ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ↔  ∀ 𝑥 ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 ) ) | 
						
							| 17 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐵 ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 ) ) ) | 
						
							| 18 | 15 16 17 | 3bitr4g | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 ) ) ) | 
						
							| 19 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝐼 𝐹 𝑁 ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 21 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 22 | 1 2 19 20 21 | ntrneiel | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  ↔  𝑠  ∈  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 23 | 22 | imbi1d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 )  ↔  ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  →  𝑥  ∈  𝑠 ) ) ) | 
						
							| 24 | 23 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ∀ 𝑥  ∈  𝐵 ( 𝑥  ∈  ( 𝐼 ‘ 𝑠 )  →  𝑥  ∈  𝑠 )  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  →  𝑥  ∈  𝑠 ) ) ) | 
						
							| 25 | 18 24 | bitrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  →  𝑥  ∈  𝑠 ) ) ) | 
						
							| 26 | 25 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑥  ∈  𝐵 ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  →  𝑥  ∈  𝑠 ) ) ) | 
						
							| 27 |  | ralcom | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑥  ∈  𝐵 ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  →  𝑥  ∈  𝑠 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑠  ∈  𝒫  𝐵 ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  →  𝑥  ∈  𝑠 ) ) | 
						
							| 28 | 26 27 | bitrdi | ⊢ ( 𝜑  →  ( ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑠  ∈  𝒫  𝐵 ( 𝑠  ∈  ( 𝑁 ‘ 𝑥 )  →  𝑥  ∈  𝑠 ) ) ) |