Step |
Hyp |
Ref |
Expression |
1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
5 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝐵 → 𝑠 ⊆ 𝐵 ) |
6 |
5
|
sselda |
⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑥 ∈ 𝑠 ) → 𝑥 ∈ 𝐵 ) |
7 |
|
biimt |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑥 ∈ 𝑠 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ) ) |
9 |
8
|
pm5.74da |
⊢ ( 𝑠 ∈ 𝒫 𝐵 → ( ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ↔ ( 𝑥 ∈ 𝑠 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ) ) ) |
10 |
|
bi2.04 |
⊢ ( ( 𝑥 ∈ 𝑠 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ) ) |
11 |
9 10
|
bitrdi |
⊢ ( 𝑠 ∈ 𝒫 𝐵 → ( ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ) ) ) |
12 |
11
|
albidv |
⊢ ( 𝑠 ∈ 𝒫 𝐵 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ) ) ) |
13 |
|
dfss2 |
⊢ ( 𝑠 ⊆ ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ) |
14 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ) ) |
15 |
12 13 14
|
3bitr4g |
⊢ ( 𝑠 ∈ 𝒫 𝐵 → ( 𝑠 ⊆ ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ) ) |
16 |
4 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑠 ⊆ ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ) ) |
17 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐼 𝐹 𝑁 ) |
18 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
20 |
1 2 17 18 19
|
ntrneiel |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
21 |
20
|
imbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ↔ ( 𝑥 ∈ 𝑠 → 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
22 |
21
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑠 → 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑠 → 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
23 |
16 22
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑠 ⊆ ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑠 → 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
24 |
23
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ⊆ ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑠 → 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
25 |
|
ralcom |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑠 → 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝑥 ∈ 𝑠 → 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
26 |
24 25
|
bitrdi |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ⊆ ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝑥 ∈ 𝑠 → 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |