Metamath Proof Explorer


Theorem ntrneix2

Description: An interior (closure) function is expansive if and only if all subsets which contain a point are neighborhoods (convergents) of that point. (Contributed by RP, 11-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
Assertion ntrneix2 φs𝒫BsIsxBs𝒫BxssNx

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 simpr φs𝒫Bs𝒫B
5 elpwi s𝒫BsB
6 5 sselda s𝒫BxsxB
7 biimt xBxIsxBxIs
8 6 7 syl s𝒫BxsxIsxBxIs
9 8 pm5.74da s𝒫BxsxIsxsxBxIs
10 bi2.04 xsxBxIsxBxsxIs
11 9 10 bitrdi s𝒫BxsxIsxBxsxIs
12 11 albidv s𝒫BxxsxIsxxBxsxIs
13 dfss2 sIsxxsxIs
14 df-ral xBxsxIsxxBxsxIs
15 12 13 14 3bitr4g s𝒫BsIsxBxsxIs
16 4 15 syl φs𝒫BsIsxBxsxIs
17 3 ad2antrr φs𝒫BxBIFN
18 simpr φs𝒫BxBxB
19 simplr φs𝒫BxBs𝒫B
20 1 2 17 18 19 ntrneiel φs𝒫BxBxIssNx
21 20 imbi2d φs𝒫BxBxsxIsxssNx
22 21 ralbidva φs𝒫BxBxsxIsxBxssNx
23 16 22 bitrd φs𝒫BsIsxBxssNx
24 23 ralbidva φs𝒫BsIss𝒫BxBxssNx
25 ralcom s𝒫BxBxssNxxBs𝒫BxssNx
26 24 25 bitrdi φs𝒫BsIsxBs𝒫BxssNx