Metamath Proof Explorer


Theorem ntrneikb

Description: The interiors of disjoint sets are disjoint if and only if the neighborhoods of every point contain no disjoint sets. (Contributed by RP, 11-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneikb φ s 𝒫 B t 𝒫 B s t = I s I t = x B s 𝒫 B t 𝒫 B s N x t N x s t

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 con34b x I s x I t s t ¬ s t ¬ x I s x I t
5 4 albii x x I s x I t s t x ¬ s t ¬ x I s x I t
6 19.21v x ¬ s t ¬ x I s x I t ¬ s t x ¬ x I s x I t
7 nne ¬ s t s t =
8 elin x I s I t x I s x I t
9 8 imbi1i x I s I t x x I s x I t x
10 noel ¬ x
11 imnot ¬ x x I s x I t x ¬ x I s x I t
12 10 11 ax-mp x I s x I t x ¬ x I s x I t
13 9 12 bitr2i ¬ x I s x I t x I s I t x
14 13 albii x ¬ x I s x I t x x I s I t x
15 dfss2 I s I t x x I s I t x
16 ss0b I s I t I s I t =
17 14 15 16 3bitr2i x ¬ x I s x I t I s I t =
18 7 17 imbi12i ¬ s t x ¬ x I s x I t s t = I s I t =
19 5 6 18 3bitrri s t = I s I t = x x I s x I t s t
20 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
21 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
22 20 21 syl φ I : 𝒫 B 𝒫 B
23 22 ffvelrnda φ s 𝒫 B I s 𝒫 B
24 23 adantr φ s 𝒫 B t 𝒫 B I s 𝒫 B
25 24 elpwid φ s 𝒫 B t 𝒫 B I s B
26 25 sseld φ s 𝒫 B t 𝒫 B x I s x B
27 26 adantrd φ s 𝒫 B t 𝒫 B x I s x I t x B
28 27 imp φ s 𝒫 B t 𝒫 B x I s x I t x B
29 biimt x B s t x B s t
30 28 29 syl φ s 𝒫 B t 𝒫 B x I s x I t s t x B s t
31 30 pm5.74da φ s 𝒫 B t 𝒫 B x I s x I t s t x I s x I t x B s t
32 bi2.04 x I s x I t x B s t x B x I s x I t s t
33 31 32 bitrdi φ s 𝒫 B t 𝒫 B x I s x I t s t x B x I s x I t s t
34 33 albidv φ s 𝒫 B t 𝒫 B x x I s x I t s t x x B x I s x I t s t
35 df-ral x B x I s x I t s t x x B x I s x I t s t
36 34 35 bitr4di φ s 𝒫 B t 𝒫 B x x I s x I t s t x B x I s x I t s t
37 3 ad3antrrr φ s 𝒫 B t 𝒫 B x B I F N
38 simpr φ s 𝒫 B t 𝒫 B x B x B
39 simpllr φ s 𝒫 B t 𝒫 B x B s 𝒫 B
40 1 2 37 38 39 ntrneiel φ s 𝒫 B t 𝒫 B x B x I s s N x
41 simplr φ s 𝒫 B t 𝒫 B x B t 𝒫 B
42 1 2 37 38 41 ntrneiel φ s 𝒫 B t 𝒫 B x B x I t t N x
43 40 42 anbi12d φ s 𝒫 B t 𝒫 B x B x I s x I t s N x t N x
44 43 imbi1d φ s 𝒫 B t 𝒫 B x B x I s x I t s t s N x t N x s t
45 44 ralbidva φ s 𝒫 B t 𝒫 B x B x I s x I t s t x B s N x t N x s t
46 36 45 bitrd φ s 𝒫 B t 𝒫 B x x I s x I t s t x B s N x t N x s t
47 19 46 syl5bb φ s 𝒫 B t 𝒫 B s t = I s I t = x B s N x t N x s t
48 47 ralbidva φ s 𝒫 B t 𝒫 B s t = I s I t = t 𝒫 B x B s N x t N x s t
49 48 ralbidva φ s 𝒫 B t 𝒫 B s t = I s I t = s 𝒫 B t 𝒫 B x B s N x t N x s t
50 ralrot3 s 𝒫 B t 𝒫 B x B s N x t N x s t x B s 𝒫 B t 𝒫 B s N x t N x s t
51 49 50 bitrdi φ s 𝒫 B t 𝒫 B s t = I s I t = x B s 𝒫 B t 𝒫 B s N x t N x s t