Metamath Proof Explorer


Theorem ntrneixb

Description: The interiors (closures) of sets that span the base set also span the base set if and only if the neighborhoods (convergents) of every point contain at least one of every pair of sets that span the base set. (Contributed by RP, 11-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
Assertion ntrneixb φs𝒫Bt𝒫Bst=BIsIt=BxBs𝒫Bt𝒫Bst=BsNxtNx

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 eqss IsIt=BIsItBBIsIt
5 4 a1i φs𝒫Bt𝒫BIsIt=BIsItBBIsIt
6 1 2 3 ntrneiiex φI𝒫B𝒫B
7 elmapi I𝒫B𝒫BI:𝒫B𝒫B
8 6 7 syl φI:𝒫B𝒫B
9 8 ffvelcdmda φs𝒫BIs𝒫B
10 9 elpwid φs𝒫BIsB
11 10 adantr φs𝒫Bt𝒫BIsB
12 8 ffvelcdmda φt𝒫BIt𝒫B
13 12 elpwid φt𝒫BItB
14 13 adantlr φs𝒫Bt𝒫BItB
15 11 14 unssd φs𝒫Bt𝒫BIsItB
16 15 biantrurd φs𝒫Bt𝒫BBIsItIsItBBIsIt
17 dfss3 BIsItxBxIsIt
18 elun xIsItxIsxIt
19 18 ralbii xBxIsItxBxIsxIt
20 17 19 bitri BIsItxBxIsxIt
21 20 a1i φs𝒫Bt𝒫BBIsItxBxIsxIt
22 5 16 21 3bitr2d φs𝒫Bt𝒫BIsIt=BxBxIsxIt
23 22 imbi2d φs𝒫Bt𝒫Bst=BIsIt=Bst=BxBxIsxIt
24 r19.21v xBst=BxIsxItst=BxBxIsxIt
25 24 a1i φs𝒫Bt𝒫BxBst=BxIsxItst=BxBxIsxIt
26 3 ad3antrrr φs𝒫Bt𝒫BxBIFN
27 simpr φs𝒫Bt𝒫BxBxB
28 simpllr φs𝒫Bt𝒫BxBs𝒫B
29 1 2 26 27 28 ntrneiel φs𝒫Bt𝒫BxBxIssNx
30 simplr φs𝒫Bt𝒫BxBt𝒫B
31 1 2 26 27 30 ntrneiel φs𝒫Bt𝒫BxBxIttNx
32 29 31 orbi12d φs𝒫Bt𝒫BxBxIsxItsNxtNx
33 32 imbi2d φs𝒫Bt𝒫BxBst=BxIsxItst=BsNxtNx
34 33 ralbidva φs𝒫Bt𝒫BxBst=BxIsxItxBst=BsNxtNx
35 23 25 34 3bitr2d φs𝒫Bt𝒫Bst=BIsIt=BxBst=BsNxtNx
36 35 ralbidva φs𝒫Bt𝒫Bst=BIsIt=Bt𝒫BxBst=BsNxtNx
37 36 ralbidva φs𝒫Bt𝒫Bst=BIsIt=Bs𝒫Bt𝒫BxBst=BsNxtNx
38 ralrot3 s𝒫Bt𝒫BxBst=BsNxtNxxBs𝒫Bt𝒫Bst=BsNxtNx
39 37 38 bitrdi φs𝒫Bt𝒫Bst=BIsIt=BxBs𝒫Bt𝒫Bst=BsNxtNx