Metamath Proof Explorer


Theorem ntrneixb

Description: The interiors (closures) of sets that span the base set also span the base set if and only if the neighborhoods (convergents) of every point contain at least one of every pair of sets that span the base set. (Contributed by RP, 11-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneixb φ s 𝒫 B t 𝒫 B s t = B I s I t = B x B s 𝒫 B t 𝒫 B s t = B s N x t N x

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 eqss I s I t = B I s I t B B I s I t
5 4 a1i φ s 𝒫 B t 𝒫 B I s I t = B I s I t B B I s I t
6 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
7 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
8 6 7 syl φ I : 𝒫 B 𝒫 B
9 8 ffvelrnda φ s 𝒫 B I s 𝒫 B
10 9 elpwid φ s 𝒫 B I s B
11 10 adantr φ s 𝒫 B t 𝒫 B I s B
12 8 ffvelrnda φ t 𝒫 B I t 𝒫 B
13 12 elpwid φ t 𝒫 B I t B
14 13 adantlr φ s 𝒫 B t 𝒫 B I t B
15 11 14 unssd φ s 𝒫 B t 𝒫 B I s I t B
16 15 biantrurd φ s 𝒫 B t 𝒫 B B I s I t I s I t B B I s I t
17 dfss3 B I s I t x B x I s I t
18 elun x I s I t x I s x I t
19 18 ralbii x B x I s I t x B x I s x I t
20 17 19 bitri B I s I t x B x I s x I t
21 20 a1i φ s 𝒫 B t 𝒫 B B I s I t x B x I s x I t
22 5 16 21 3bitr2d φ s 𝒫 B t 𝒫 B I s I t = B x B x I s x I t
23 22 imbi2d φ s 𝒫 B t 𝒫 B s t = B I s I t = B s t = B x B x I s x I t
24 r19.21v x B s t = B x I s x I t s t = B x B x I s x I t
25 24 a1i φ s 𝒫 B t 𝒫 B x B s t = B x I s x I t s t = B x B x I s x I t
26 3 ad3antrrr φ s 𝒫 B t 𝒫 B x B I F N
27 simpr φ s 𝒫 B t 𝒫 B x B x B
28 simpllr φ s 𝒫 B t 𝒫 B x B s 𝒫 B
29 1 2 26 27 28 ntrneiel φ s 𝒫 B t 𝒫 B x B x I s s N x
30 simplr φ s 𝒫 B t 𝒫 B x B t 𝒫 B
31 1 2 26 27 30 ntrneiel φ s 𝒫 B t 𝒫 B x B x I t t N x
32 29 31 orbi12d φ s 𝒫 B t 𝒫 B x B x I s x I t s N x t N x
33 32 imbi2d φ s 𝒫 B t 𝒫 B x B s t = B x I s x I t s t = B s N x t N x
34 33 ralbidva φ s 𝒫 B t 𝒫 B x B s t = B x I s x I t x B s t = B s N x t N x
35 23 25 34 3bitr2d φ s 𝒫 B t 𝒫 B s t = B I s I t = B x B s t = B s N x t N x
36 35 ralbidva φ s 𝒫 B t 𝒫 B s t = B I s I t = B t 𝒫 B x B s t = B s N x t N x
37 36 ralbidva φ s 𝒫 B t 𝒫 B s t = B I s I t = B s 𝒫 B t 𝒫 B x B s t = B s N x t N x
38 ralrot3 s 𝒫 B t 𝒫 B x B s t = B s N x t N x x B s 𝒫 B t 𝒫 B s t = B s N x t N x
39 37 38 bitrdi φ s 𝒫 B t 𝒫 B s t = B I s I t = B x B s 𝒫 B t 𝒫 B s t = B s N x t N x