Metamath Proof Explorer


Theorem ntrneik3

Description: The intersection of interiors of any pair is a subset of the interior of the intersection if and only if the intersection of any two neighborhoods of a point is also a neighborhood. (Contributed by RP, 19-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneik3 φ s 𝒫 B t 𝒫 B I s I t I s t x B s 𝒫 B t 𝒫 B s N x t N x s t N x

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 dfss3 I s I t I s t x I s I t x I s t
5 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
6 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
7 5 6 syl φ I : 𝒫 B 𝒫 B
8 7 ffvelrnda φ s 𝒫 B I s 𝒫 B
9 8 elpwid φ s 𝒫 B I s B
10 ssinss1 I s B I s I t B
11 9 10 syl φ s 𝒫 B I s I t B
12 11 adantr φ s 𝒫 B t 𝒫 B I s I t B
13 ralss I s I t B x I s I t x I s t x B x I s I t x I s t
14 12 13 syl φ s 𝒫 B t 𝒫 B x I s I t x I s t x B x I s I t x I s t
15 elin x I s I t x I s x I t
16 3 ad3antrrr φ s 𝒫 B t 𝒫 B x B I F N
17 simpr φ s 𝒫 B t 𝒫 B x B x B
18 simpllr φ s 𝒫 B t 𝒫 B x B s 𝒫 B
19 1 2 16 17 18 ntrneiel φ s 𝒫 B t 𝒫 B x B x I s s N x
20 simplr φ s 𝒫 B t 𝒫 B x B t 𝒫 B
21 1 2 16 17 20 ntrneiel φ s 𝒫 B t 𝒫 B x B x I t t N x
22 19 21 anbi12d φ s 𝒫 B t 𝒫 B x B x I s x I t s N x t N x
23 15 22 syl5bb φ s 𝒫 B t 𝒫 B x B x I s I t s N x t N x
24 1 2 3 ntrneibex φ B V
25 24 ad3antrrr φ s 𝒫 B t 𝒫 B x B B V
26 18 elpwid φ s 𝒫 B t 𝒫 B x B s B
27 ssinss1 s B s t B
28 26 27 syl φ s 𝒫 B t 𝒫 B x B s t B
29 25 28 sselpwd φ s 𝒫 B t 𝒫 B x B s t 𝒫 B
30 1 2 16 17 29 ntrneiel φ s 𝒫 B t 𝒫 B x B x I s t s t N x
31 23 30 imbi12d φ s 𝒫 B t 𝒫 B x B x I s I t x I s t s N x t N x s t N x
32 31 ralbidva φ s 𝒫 B t 𝒫 B x B x I s I t x I s t x B s N x t N x s t N x
33 14 32 bitrd φ s 𝒫 B t 𝒫 B x I s I t x I s t x B s N x t N x s t N x
34 4 33 syl5bb φ s 𝒫 B t 𝒫 B I s I t I s t x B s N x t N x s t N x
35 34 ralbidva φ s 𝒫 B t 𝒫 B I s I t I s t t 𝒫 B x B s N x t N x s t N x
36 ralcom t 𝒫 B x B s N x t N x s t N x x B t 𝒫 B s N x t N x s t N x
37 35 36 bitrdi φ s 𝒫 B t 𝒫 B I s I t I s t x B t 𝒫 B s N x t N x s t N x
38 37 ralbidva φ s 𝒫 B t 𝒫 B I s I t I s t s 𝒫 B x B t 𝒫 B s N x t N x s t N x
39 ralcom s 𝒫 B x B t 𝒫 B s N x t N x s t N x x B s 𝒫 B t 𝒫 B s N x t N x s t N x
40 38 39 bitrdi φ s 𝒫 B t 𝒫 B I s I t I s t x B s 𝒫 B t 𝒫 B s N x t N x s t N x