Description: The closure of the union of any pair is a subset of the union of closures if and only if the union of any pair belonging to the convergents of a point implies at least one of the pair belongs to the the convergents of that point. (Contributed by RP, 19-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrnei.o | |
|
ntrnei.f | |
||
ntrnei.r | |
||
Assertion | ntrneix3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | |
|
2 | ntrnei.f | |
|
3 | ntrnei.r | |
|
4 | dfss3 | |
|
5 | 1 2 3 | ntrneiiex | |
6 | 5 | ad2antrr | |
7 | elmapi | |
|
8 | 6 7 | syl | |
9 | 1 2 3 | ntrneibex | |
10 | 9 | ad2antrr | |
11 | simplr | |
|
12 | 11 | elpwid | |
13 | simpr | |
|
14 | 13 | elpwid | |
15 | 12 14 | unssd | |
16 | 10 15 | sselpwd | |
17 | 8 16 | ffvelcdmd | |
18 | 17 | elpwid | |
19 | ralss | |
|
20 | 18 19 | syl | |
21 | 3 | ad3antrrr | |
22 | simpr | |
|
23 | 9 | ad3antrrr | |
24 | simpllr | |
|
25 | 24 | elpwid | |
26 | simplr | |
|
27 | 26 | elpwid | |
28 | 25 27 | unssd | |
29 | 23 28 | sselpwd | |
30 | 1 2 21 22 29 | ntrneiel | |
31 | elun | |
|
32 | 1 2 21 22 24 | ntrneiel | |
33 | 1 2 21 22 26 | ntrneiel | |
34 | 32 33 | orbi12d | |
35 | 31 34 | bitrid | |
36 | 30 35 | imbi12d | |
37 | 36 | ralbidva | |
38 | 20 37 | bitrd | |
39 | 4 38 | bitrid | |
40 | 39 | ralbidva | |
41 | ralcom | |
|
42 | 40 41 | bitrdi | |
43 | 42 | ralbidva | |
44 | ralcom | |
|
45 | 43 44 | bitrdi | |