Metamath Proof Explorer


Theorem ntrneix3

Description: The closure of the union of any pair is a subset of the union of closures if and only if the union of any pair belonging to the convergents of a point implies at least one of the pair belongs to the the convergents of that point. (Contributed by RP, 19-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
Assertion ntrneix3 φs𝒫Bt𝒫BIstIsItxBs𝒫Bt𝒫BstNxsNxtNx

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 dfss3 IstIsItxIstxIsIt
5 1 2 3 ntrneiiex φI𝒫B𝒫B
6 5 ad2antrr φs𝒫Bt𝒫BI𝒫B𝒫B
7 elmapi I𝒫B𝒫BI:𝒫B𝒫B
8 6 7 syl φs𝒫Bt𝒫BI:𝒫B𝒫B
9 1 2 3 ntrneibex φBV
10 9 ad2antrr φs𝒫Bt𝒫BBV
11 simplr φs𝒫Bt𝒫Bs𝒫B
12 11 elpwid φs𝒫Bt𝒫BsB
13 simpr φs𝒫Bt𝒫Bt𝒫B
14 13 elpwid φs𝒫Bt𝒫BtB
15 12 14 unssd φs𝒫Bt𝒫BstB
16 10 15 sselpwd φs𝒫Bt𝒫Bst𝒫B
17 8 16 ffvelcdmd φs𝒫Bt𝒫BIst𝒫B
18 17 elpwid φs𝒫Bt𝒫BIstB
19 ralss IstBxIstxIsItxBxIstxIsIt
20 18 19 syl φs𝒫Bt𝒫BxIstxIsItxBxIstxIsIt
21 3 ad3antrrr φs𝒫Bt𝒫BxBIFN
22 simpr φs𝒫Bt𝒫BxBxB
23 9 ad3antrrr φs𝒫Bt𝒫BxBBV
24 simpllr φs𝒫Bt𝒫BxBs𝒫B
25 24 elpwid φs𝒫Bt𝒫BxBsB
26 simplr φs𝒫Bt𝒫BxBt𝒫B
27 26 elpwid φs𝒫Bt𝒫BxBtB
28 25 27 unssd φs𝒫Bt𝒫BxBstB
29 23 28 sselpwd φs𝒫Bt𝒫BxBst𝒫B
30 1 2 21 22 29 ntrneiel φs𝒫Bt𝒫BxBxIststNx
31 elun xIsItxIsxIt
32 1 2 21 22 24 ntrneiel φs𝒫Bt𝒫BxBxIssNx
33 1 2 21 22 26 ntrneiel φs𝒫Bt𝒫BxBxIttNx
34 32 33 orbi12d φs𝒫Bt𝒫BxBxIsxItsNxtNx
35 31 34 bitrid φs𝒫Bt𝒫BxBxIsItsNxtNx
36 30 35 imbi12d φs𝒫Bt𝒫BxBxIstxIsItstNxsNxtNx
37 36 ralbidva φs𝒫Bt𝒫BxBxIstxIsItxBstNxsNxtNx
38 20 37 bitrd φs𝒫Bt𝒫BxIstxIsItxBstNxsNxtNx
39 4 38 bitrid φs𝒫Bt𝒫BIstIsItxBstNxsNxtNx
40 39 ralbidva φs𝒫Bt𝒫BIstIsItt𝒫BxBstNxsNxtNx
41 ralcom t𝒫BxBstNxsNxtNxxBt𝒫BstNxsNxtNx
42 40 41 bitrdi φs𝒫Bt𝒫BIstIsItxBt𝒫BstNxsNxtNx
43 42 ralbidva φs𝒫Bt𝒫BIstIsIts𝒫BxBt𝒫BstNxsNxtNx
44 ralcom s𝒫BxBt𝒫BstNxsNxtNxxBs𝒫Bt𝒫BstNxsNxtNx
45 43 44 bitrdi φs𝒫Bt𝒫BIstIsItxBs𝒫Bt𝒫BstNxsNxtNx