Metamath Proof Explorer


Theorem ntrneix3

Description: The closure of the union of any pair is a subset of the union of closures if and only if the union of any pair belonging to the convergents of a point implies at least one of the pair belongs to the the convergents of that point. (Contributed by RP, 19-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneix3 φ s 𝒫 B t 𝒫 B I s t I s I t x B s 𝒫 B t 𝒫 B s t N x s N x t N x

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 dfss3 I s t I s I t x I s t x I s I t
5 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
6 5 ad2antrr φ s 𝒫 B t 𝒫 B I 𝒫 B 𝒫 B
7 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
8 6 7 syl φ s 𝒫 B t 𝒫 B I : 𝒫 B 𝒫 B
9 1 2 3 ntrneibex φ B V
10 9 ad2antrr φ s 𝒫 B t 𝒫 B B V
11 simplr φ s 𝒫 B t 𝒫 B s 𝒫 B
12 11 elpwid φ s 𝒫 B t 𝒫 B s B
13 simpr φ s 𝒫 B t 𝒫 B t 𝒫 B
14 13 elpwid φ s 𝒫 B t 𝒫 B t B
15 12 14 unssd φ s 𝒫 B t 𝒫 B s t B
16 10 15 sselpwd φ s 𝒫 B t 𝒫 B s t 𝒫 B
17 8 16 ffvelrnd φ s 𝒫 B t 𝒫 B I s t 𝒫 B
18 17 elpwid φ s 𝒫 B t 𝒫 B I s t B
19 ralss I s t B x I s t x I s I t x B x I s t x I s I t
20 18 19 syl φ s 𝒫 B t 𝒫 B x I s t x I s I t x B x I s t x I s I t
21 3 ad3antrrr φ s 𝒫 B t 𝒫 B x B I F N
22 simpr φ s 𝒫 B t 𝒫 B x B x B
23 9 ad3antrrr φ s 𝒫 B t 𝒫 B x B B V
24 simpllr φ s 𝒫 B t 𝒫 B x B s 𝒫 B
25 24 elpwid φ s 𝒫 B t 𝒫 B x B s B
26 simplr φ s 𝒫 B t 𝒫 B x B t 𝒫 B
27 26 elpwid φ s 𝒫 B t 𝒫 B x B t B
28 25 27 unssd φ s 𝒫 B t 𝒫 B x B s t B
29 23 28 sselpwd φ s 𝒫 B t 𝒫 B x B s t 𝒫 B
30 1 2 21 22 29 ntrneiel φ s 𝒫 B t 𝒫 B x B x I s t s t N x
31 elun x I s I t x I s x I t
32 1 2 21 22 24 ntrneiel φ s 𝒫 B t 𝒫 B x B x I s s N x
33 1 2 21 22 26 ntrneiel φ s 𝒫 B t 𝒫 B x B x I t t N x
34 32 33 orbi12d φ s 𝒫 B t 𝒫 B x B x I s x I t s N x t N x
35 31 34 syl5bb φ s 𝒫 B t 𝒫 B x B x I s I t s N x t N x
36 30 35 imbi12d φ s 𝒫 B t 𝒫 B x B x I s t x I s I t s t N x s N x t N x
37 36 ralbidva φ s 𝒫 B t 𝒫 B x B x I s t x I s I t x B s t N x s N x t N x
38 20 37 bitrd φ s 𝒫 B t 𝒫 B x I s t x I s I t x B s t N x s N x t N x
39 4 38 syl5bb φ s 𝒫 B t 𝒫 B I s t I s I t x B s t N x s N x t N x
40 39 ralbidva φ s 𝒫 B t 𝒫 B I s t I s I t t 𝒫 B x B s t N x s N x t N x
41 ralcom t 𝒫 B x B s t N x s N x t N x x B t 𝒫 B s t N x s N x t N x
42 40 41 bitrdi φ s 𝒫 B t 𝒫 B I s t I s I t x B t 𝒫 B s t N x s N x t N x
43 42 ralbidva φ s 𝒫 B t 𝒫 B I s t I s I t s 𝒫 B x B t 𝒫 B s t N x s N x t N x
44 ralcom s 𝒫 B x B t 𝒫 B s t N x s N x t N x x B s 𝒫 B t 𝒫 B s t N x s N x t N x
45 43 44 bitrdi φ s 𝒫 B t 𝒫 B I s t I s I t x B s 𝒫 B t 𝒫 B s t N x s N x t N x