Step |
Hyp |
Ref |
Expression |
1 |
|
ntrnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
2 |
|
ntrnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
3 |
|
ntrnei.r |
⊢ ( 𝜑 → 𝐼 𝐹 𝑁 ) |
4 |
|
eqss |
⊢ ( ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) = 𝐵 ↔ ( ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ) ) |
5 |
4
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) = 𝐵 ↔ ( ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ) ) ) |
6 |
1 2 3
|
ntrneiiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
7 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
9 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ 𝑠 ) ∈ 𝒫 𝐵 ) |
10 |
9
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ 𝑠 ) ⊆ 𝐵 ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ 𝑠 ) ⊆ 𝐵 ) |
12 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ 𝑡 ) ∈ 𝒫 𝐵 ) |
13 |
12
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ 𝑡 ) ⊆ 𝐵 ) |
14 |
13
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ 𝑡 ) ⊆ 𝐵 ) |
15 |
11 14
|
unssd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ⊆ 𝐵 ) |
16 |
15
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ⊆ ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ↔ ( ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ) ) ) |
17 |
|
dfss3 |
⊢ ( 𝐵 ⊆ ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑥 ∈ 𝐵 𝑥 ∈ ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ) |
18 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) |
19 |
18
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝑥 ∈ ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) |
20 |
17 19
|
bitri |
⊢ ( 𝐵 ⊆ ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) |
21 |
20
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ⊆ ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) |
22 |
5 16 21
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) = 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) |
23 |
22
|
imbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) = 𝐵 ) ↔ ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) ) |
24 |
|
r19.21v |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) |
25 |
24
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ) ) |
26 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐼 𝐹 𝑁 ) |
27 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
28 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
29 |
1 2 26 27 28
|
ntrneiel |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
30 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑡 ∈ 𝒫 𝐵 ) |
31 |
1 2 26 27 30
|
ntrneiel |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ↔ 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
32 |
29 31
|
orbi12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∨ 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
33 |
32
|
imbi2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∨ 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) ) |
34 |
33
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑠 ) ∨ 𝑥 ∈ ( 𝐼 ‘ 𝑡 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∨ 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) ) |
35 |
23 25 34
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) = 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∨ 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) ) |
36 |
35
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) = 𝐵 ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∨ 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) ) |
37 |
36
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) = 𝐵 ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∨ 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) ) |
38 |
|
ralrot3 |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∨ 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∨ 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) |
39 |
37 38
|
bitrdi |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( ( 𝐼 ‘ 𝑠 ) ∪ ( 𝐼 ‘ 𝑡 ) ) = 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∪ 𝑡 ) = 𝐵 → ( 𝑠 ∈ ( 𝑁 ‘ 𝑥 ) ∨ 𝑡 ∈ ( 𝑁 ‘ 𝑥 ) ) ) ) ) |