| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | 
						
							| 2 |  | ntrnei.f |  |-  F = ( ~P B O B ) | 
						
							| 3 |  | ntrnei.r |  |-  ( ph -> I F N ) | 
						
							| 4 | 1 2 3 | ntrneiiex |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 5 |  | elmapi |  |-  ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> I : ~P B --> ~P B ) | 
						
							| 7 |  | 0elpw |  |-  (/) e. ~P B | 
						
							| 8 | 7 | a1i |  |-  ( ph -> (/) e. ~P B ) | 
						
							| 9 | 6 8 | ffvelcdmd |  |-  ( ph -> ( I ` (/) ) e. ~P B ) | 
						
							| 10 | 9 | elpwid |  |-  ( ph -> ( I ` (/) ) C_ B ) | 
						
							| 11 |  | reldisj |  |-  ( ( I ` (/) ) C_ B -> ( ( ( I ` (/) ) i^i B ) = (/) <-> ( I ` (/) ) C_ ( B \ B ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> ( ( ( I ` (/) ) i^i B ) = (/) <-> ( I ` (/) ) C_ ( B \ B ) ) ) | 
						
							| 13 | 12 | bicomd |  |-  ( ph -> ( ( I ` (/) ) C_ ( B \ B ) <-> ( ( I ` (/) ) i^i B ) = (/) ) ) | 
						
							| 14 |  | difid |  |-  ( B \ B ) = (/) | 
						
							| 15 | 14 | sseq2i |  |-  ( ( I ` (/) ) C_ ( B \ B ) <-> ( I ` (/) ) C_ (/) ) | 
						
							| 16 |  | ss0b |  |-  ( ( I ` (/) ) C_ (/) <-> ( I ` (/) ) = (/) ) | 
						
							| 17 | 15 16 | bitri |  |-  ( ( I ` (/) ) C_ ( B \ B ) <-> ( I ` (/) ) = (/) ) | 
						
							| 18 |  | disjr |  |-  ( ( ( I ` (/) ) i^i B ) = (/) <-> A. x e. B -. x e. ( I ` (/) ) ) | 
						
							| 19 | 13 17 18 | 3bitr3g |  |-  ( ph -> ( ( I ` (/) ) = (/) <-> A. x e. B -. x e. ( I ` (/) ) ) ) | 
						
							| 20 | 3 | adantr |  |-  ( ( ph /\ x e. B ) -> I F N ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ x e. B ) -> x e. B ) | 
						
							| 22 | 7 | a1i |  |-  ( ( ph /\ x e. B ) -> (/) e. ~P B ) | 
						
							| 23 | 1 2 20 21 22 | ntrneiel |  |-  ( ( ph /\ x e. B ) -> ( x e. ( I ` (/) ) <-> (/) e. ( N ` x ) ) ) | 
						
							| 24 | 23 | notbid |  |-  ( ( ph /\ x e. B ) -> ( -. x e. ( I ` (/) ) <-> -. (/) e. ( N ` x ) ) ) | 
						
							| 25 | 24 | ralbidva |  |-  ( ph -> ( A. x e. B -. x e. ( I ` (/) ) <-> A. x e. B -. (/) e. ( N ` x ) ) ) | 
						
							| 26 | 19 25 | bitrd |  |-  ( ph -> ( ( I ` (/) ) = (/) <-> A. x e. B -. (/) e. ( N ` x ) ) ) |