| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrnei.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
| 2 |
|
ntrnei.f |
|- F = ( ~P B O B ) |
| 3 |
|
ntrnei.r |
|- ( ph -> I F N ) |
| 4 |
1 2 3
|
ntrneiiex |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |
| 5 |
|
elmapi |
|- ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) |
| 6 |
4 5
|
syl |
|- ( ph -> I : ~P B --> ~P B ) |
| 7 |
|
0elpw |
|- (/) e. ~P B |
| 8 |
7
|
a1i |
|- ( ph -> (/) e. ~P B ) |
| 9 |
6 8
|
ffvelcdmd |
|- ( ph -> ( I ` (/) ) e. ~P B ) |
| 10 |
9
|
elpwid |
|- ( ph -> ( I ` (/) ) C_ B ) |
| 11 |
|
reldisj |
|- ( ( I ` (/) ) C_ B -> ( ( ( I ` (/) ) i^i B ) = (/) <-> ( I ` (/) ) C_ ( B \ B ) ) ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( ( ( I ` (/) ) i^i B ) = (/) <-> ( I ` (/) ) C_ ( B \ B ) ) ) |
| 13 |
12
|
bicomd |
|- ( ph -> ( ( I ` (/) ) C_ ( B \ B ) <-> ( ( I ` (/) ) i^i B ) = (/) ) ) |
| 14 |
|
difid |
|- ( B \ B ) = (/) |
| 15 |
14
|
sseq2i |
|- ( ( I ` (/) ) C_ ( B \ B ) <-> ( I ` (/) ) C_ (/) ) |
| 16 |
|
ss0b |
|- ( ( I ` (/) ) C_ (/) <-> ( I ` (/) ) = (/) ) |
| 17 |
15 16
|
bitri |
|- ( ( I ` (/) ) C_ ( B \ B ) <-> ( I ` (/) ) = (/) ) |
| 18 |
|
disjr |
|- ( ( ( I ` (/) ) i^i B ) = (/) <-> A. x e. B -. x e. ( I ` (/) ) ) |
| 19 |
13 17 18
|
3bitr3g |
|- ( ph -> ( ( I ` (/) ) = (/) <-> A. x e. B -. x e. ( I ` (/) ) ) ) |
| 20 |
3
|
adantr |
|- ( ( ph /\ x e. B ) -> I F N ) |
| 21 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
| 22 |
7
|
a1i |
|- ( ( ph /\ x e. B ) -> (/) e. ~P B ) |
| 23 |
1 2 20 21 22
|
ntrneiel |
|- ( ( ph /\ x e. B ) -> ( x e. ( I ` (/) ) <-> (/) e. ( N ` x ) ) ) |
| 24 |
23
|
notbid |
|- ( ( ph /\ x e. B ) -> ( -. x e. ( I ` (/) ) <-> -. (/) e. ( N ` x ) ) ) |
| 25 |
24
|
ralbidva |
|- ( ph -> ( A. x e. B -. x e. ( I ` (/) ) <-> A. x e. B -. (/) e. ( N ` x ) ) ) |
| 26 |
19 25
|
bitrd |
|- ( ph -> ( ( I ` (/) ) = (/) <-> A. x e. B -. (/) e. ( N ` x ) ) ) |