| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | 
						
							| 2 |  | ntrnei.f |  |-  F = ( ~P B O B ) | 
						
							| 3 |  | ntrnei.r |  |-  ( ph -> I F N ) | 
						
							| 4 | 1 2 3 | ntrneiiex |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 5 |  | elmapi |  |-  ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> I : ~P B --> ~P B ) | 
						
							| 7 | 1 2 3 | ntrneibex |  |-  ( ph -> B e. _V ) | 
						
							| 8 |  | pwidg |  |-  ( B e. _V -> B e. ~P B ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> B e. ~P B ) | 
						
							| 10 | 6 9 | ffvelcdmd |  |-  ( ph -> ( I ` B ) e. ~P B ) | 
						
							| 11 | 10 | elpwid |  |-  ( ph -> ( I ` B ) C_ B ) | 
						
							| 12 |  | eqss |  |-  ( ( I ` B ) = B <-> ( ( I ` B ) C_ B /\ B C_ ( I ` B ) ) ) | 
						
							| 13 |  | dfss3 |  |-  ( B C_ ( I ` B ) <-> A. x e. B x e. ( I ` B ) ) | 
						
							| 14 | 13 | anbi2i |  |-  ( ( ( I ` B ) C_ B /\ B C_ ( I ` B ) ) <-> ( ( I ` B ) C_ B /\ A. x e. B x e. ( I ` B ) ) ) | 
						
							| 15 | 12 14 | bitri |  |-  ( ( I ` B ) = B <-> ( ( I ` B ) C_ B /\ A. x e. B x e. ( I ` B ) ) ) | 
						
							| 16 | 15 | a1i |  |-  ( ph -> ( ( I ` B ) = B <-> ( ( I ` B ) C_ B /\ A. x e. B x e. ( I ` B ) ) ) ) | 
						
							| 17 | 11 16 | mpbirand |  |-  ( ph -> ( ( I ` B ) = B <-> A. x e. B x e. ( I ` B ) ) ) | 
						
							| 18 | 3 | adantr |  |-  ( ( ph /\ x e. B ) -> I F N ) | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ x e. B ) -> x e. B ) | 
						
							| 20 | 9 | adantr |  |-  ( ( ph /\ x e. B ) -> B e. ~P B ) | 
						
							| 21 | 1 2 18 19 20 | ntrneiel |  |-  ( ( ph /\ x e. B ) -> ( x e. ( I ` B ) <-> B e. ( N ` x ) ) ) | 
						
							| 22 | 21 | ralbidva |  |-  ( ph -> ( A. x e. B x e. ( I ` B ) <-> A. x e. B B e. ( N ` x ) ) ) | 
						
							| 23 | 17 22 | bitrd |  |-  ( ph -> ( ( I ` B ) = B <-> A. x e. B B e. ( N ` x ) ) ) |