Step |
Hyp |
Ref |
Expression |
1 |
|
ntrnei.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
2 |
|
ntrnei.f |
|- F = ( ~P B O B ) |
3 |
|
ntrnei.r |
|- ( ph -> I F N ) |
4 |
1 2 3
|
ntrneiiex |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |
5 |
|
elmapi |
|- ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) |
6 |
4 5
|
syl |
|- ( ph -> I : ~P B --> ~P B ) |
7 |
1 2 3
|
ntrneibex |
|- ( ph -> B e. _V ) |
8 |
|
pwidg |
|- ( B e. _V -> B e. ~P B ) |
9 |
7 8
|
syl |
|- ( ph -> B e. ~P B ) |
10 |
6 9
|
ffvelrnd |
|- ( ph -> ( I ` B ) e. ~P B ) |
11 |
10
|
elpwid |
|- ( ph -> ( I ` B ) C_ B ) |
12 |
|
eqss |
|- ( ( I ` B ) = B <-> ( ( I ` B ) C_ B /\ B C_ ( I ` B ) ) ) |
13 |
|
dfss3 |
|- ( B C_ ( I ` B ) <-> A. x e. B x e. ( I ` B ) ) |
14 |
13
|
anbi2i |
|- ( ( ( I ` B ) C_ B /\ B C_ ( I ` B ) ) <-> ( ( I ` B ) C_ B /\ A. x e. B x e. ( I ` B ) ) ) |
15 |
12 14
|
bitri |
|- ( ( I ` B ) = B <-> ( ( I ` B ) C_ B /\ A. x e. B x e. ( I ` B ) ) ) |
16 |
15
|
a1i |
|- ( ph -> ( ( I ` B ) = B <-> ( ( I ` B ) C_ B /\ A. x e. B x e. ( I ` B ) ) ) ) |
17 |
11 16
|
mpbirand |
|- ( ph -> ( ( I ` B ) = B <-> A. x e. B x e. ( I ` B ) ) ) |
18 |
3
|
adantr |
|- ( ( ph /\ x e. B ) -> I F N ) |
19 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
20 |
9
|
adantr |
|- ( ( ph /\ x e. B ) -> B e. ~P B ) |
21 |
1 2 18 19 20
|
ntrneiel |
|- ( ( ph /\ x e. B ) -> ( x e. ( I ` B ) <-> B e. ( N ` x ) ) ) |
22 |
21
|
ralbidva |
|- ( ph -> ( A. x e. B x e. ( I ` B ) <-> A. x e. B B e. ( N ` x ) ) ) |
23 |
17 22
|
bitrd |
|- ( ph -> ( ( I ` B ) = B <-> A. x e. B B e. ( N ` x ) ) ) |