Metamath Proof Explorer


Theorem ntrneicls00

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021)

Ref Expression
Hypotheses ntrnei.o
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
ntrnei.f
|- F = ( ~P B O B )
ntrnei.r
|- ( ph -> I F N )
Assertion ntrneicls00
|- ( ph -> ( ( I ` B ) = B <-> A. x e. B B e. ( N ` x ) ) )

Proof

Step Hyp Ref Expression
1 ntrnei.o
 |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
2 ntrnei.f
 |-  F = ( ~P B O B )
3 ntrnei.r
 |-  ( ph -> I F N )
4 1 2 3 ntrneiiex
 |-  ( ph -> I e. ( ~P B ^m ~P B ) )
5 elmapi
 |-  ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B )
6 4 5 syl
 |-  ( ph -> I : ~P B --> ~P B )
7 1 2 3 ntrneibex
 |-  ( ph -> B e. _V )
8 pwidg
 |-  ( B e. _V -> B e. ~P B )
9 7 8 syl
 |-  ( ph -> B e. ~P B )
10 6 9 ffvelrnd
 |-  ( ph -> ( I ` B ) e. ~P B )
11 10 elpwid
 |-  ( ph -> ( I ` B ) C_ B )
12 eqss
 |-  ( ( I ` B ) = B <-> ( ( I ` B ) C_ B /\ B C_ ( I ` B ) ) )
13 dfss3
 |-  ( B C_ ( I ` B ) <-> A. x e. B x e. ( I ` B ) )
14 13 anbi2i
 |-  ( ( ( I ` B ) C_ B /\ B C_ ( I ` B ) ) <-> ( ( I ` B ) C_ B /\ A. x e. B x e. ( I ` B ) ) )
15 12 14 bitri
 |-  ( ( I ` B ) = B <-> ( ( I ` B ) C_ B /\ A. x e. B x e. ( I ` B ) ) )
16 15 a1i
 |-  ( ph -> ( ( I ` B ) = B <-> ( ( I ` B ) C_ B /\ A. x e. B x e. ( I ` B ) ) ) )
17 11 16 mpbirand
 |-  ( ph -> ( ( I ` B ) = B <-> A. x e. B x e. ( I ` B ) ) )
18 3 adantr
 |-  ( ( ph /\ x e. B ) -> I F N )
19 simpr
 |-  ( ( ph /\ x e. B ) -> x e. B )
20 9 adantr
 |-  ( ( ph /\ x e. B ) -> B e. ~P B )
21 1 2 18 19 20 ntrneiel
 |-  ( ( ph /\ x e. B ) -> ( x e. ( I ` B ) <-> B e. ( N ` x ) ) )
22 21 ralbidva
 |-  ( ph -> ( A. x e. B x e. ( I ` B ) <-> A. x e. B B e. ( N ` x ) ) )
23 17 22 bitrd
 |-  ( ph -> ( ( I ` B ) = B <-> A. x e. B B e. ( N ` x ) ) )