| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nvpncan2.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
nvpncan2.2 |
|- G = ( +v ` U ) |
| 3 |
|
nvpncan2.3 |
|- M = ( -v ` U ) |
| 4 |
|
simprl |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> A e. X ) |
| 5 |
|
simprr |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
| 6 |
4 5 5
|
3jca |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( A e. X /\ B e. X /\ B e. X ) ) |
| 7 |
1 2 3
|
nvaddsub |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ B e. X ) ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) ) |
| 8 |
6 7
|
syldan |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) ) |
| 9 |
8
|
3impb |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) ) |
| 10 |
1 2 3
|
nvpncan |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M B ) = A ) |
| 11 |
9 10
|
eqtr3d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A M B ) G B ) = A ) |