| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimeq.1 |  |-  ( ( ph /\ x e. A ) -> B e. CC ) | 
						
							| 2 |  | rlimeq.2 |  |-  ( ( ph /\ x e. A ) -> C e. CC ) | 
						
							| 3 |  | rlimeq.3 |  |-  ( ph -> D e. RR ) | 
						
							| 4 |  | rlimeq.4 |  |-  ( ( ph /\ ( x e. A /\ D <_ x ) ) -> B = C ) | 
						
							| 5 | 1 | abscld |  |-  ( ( ph /\ x e. A ) -> ( abs ` B ) e. RR ) | 
						
							| 6 | 2 | abscld |  |-  ( ( ph /\ x e. A ) -> ( abs ` C ) e. RR ) | 
						
							| 7 | 4 | fveq2d |  |-  ( ( ph /\ ( x e. A /\ D <_ x ) ) -> ( abs ` B ) = ( abs ` C ) ) | 
						
							| 8 | 5 6 3 7 | lo1eq |  |-  ( ph -> ( ( x e. A |-> ( abs ` B ) ) e. <_O(1) <-> ( x e. A |-> ( abs ` C ) ) e. <_O(1) ) ) | 
						
							| 9 | 1 | lo1o12 |  |-  ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) ) | 
						
							| 10 | 2 | lo1o12 |  |-  ( ph -> ( ( x e. A |-> C ) e. O(1) <-> ( x e. A |-> ( abs ` C ) ) e. <_O(1) ) ) | 
						
							| 11 | 8 9 10 | 3bitr4d |  |-  ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> C ) e. O(1) ) ) |