| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimeq.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 2 |  | rlimeq.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 3 |  | rlimeq.3 | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 4 |  | rlimeq.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐷  ≤  𝑥 ) )  →  𝐵  =  𝐶 ) | 
						
							| 5 | 1 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 6 | 2 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 7 | 4 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐷  ≤  𝑥 ) )  →  ( abs ‘ 𝐵 )  =  ( abs ‘ 𝐶 ) ) | 
						
							| 8 | 5 6 3 7 | lo1eq | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  ≤𝑂(1)  ↔  ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐶 ) )  ∈  ≤𝑂(1) ) ) | 
						
							| 9 | 1 | lo1o12 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  ≤𝑂(1) ) ) | 
						
							| 10 | 2 | lo1o12 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐶 ) )  ∈  ≤𝑂(1) ) ) | 
						
							| 11 | 8 9 10 | 3bitr4d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝑂(1) ) ) |