Metamath Proof Explorer


Theorem o1eq

Description: Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses rlimeq.1 φxAB
rlimeq.2 φxAC
rlimeq.3 φD
rlimeq.4 φxADxB=C
Assertion o1eq φxAB𝑂1xAC𝑂1

Proof

Step Hyp Ref Expression
1 rlimeq.1 φxAB
2 rlimeq.2 φxAC
3 rlimeq.3 φD
4 rlimeq.4 φxADxB=C
5 1 abscld φxAB
6 2 abscld φxAC
7 4 fveq2d φxADxB=C
8 5 6 3 7 lo1eq φxAB𝑂1xAC𝑂1
9 1 lo1o12 φxAB𝑂1xAB𝑂1
10 2 lo1o12 φxAC𝑂1xAC𝑂1
11 8 9 10 3bitr4d φxAB𝑂1xAC𝑂1