| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0lt1o |
|- (/) e. 1o |
| 2 |
|
ordom |
|- Ord _om |
| 3 |
|
ordirr |
|- ( Ord _om -> -. _om e. _om ) |
| 4 |
|
omelon |
|- _om e. On |
| 5 |
|
oa0r |
|- ( _om e. On -> ( (/) +o _om ) = _om ) |
| 6 |
4 5
|
ax-mp |
|- ( (/) +o _om ) = _om |
| 7 |
|
1oaomeqom |
|- ( 1o +o _om ) = _om |
| 8 |
6 7
|
eleq12i |
|- ( ( (/) +o _om ) e. ( 1o +o _om ) <-> _om e. _om ) |
| 9 |
3 8
|
sylnibr |
|- ( Ord _om -> -. ( (/) +o _om ) e. ( 1o +o _om ) ) |
| 10 |
2 9
|
ax-mp |
|- -. ( (/) +o _om ) e. ( 1o +o _om ) |
| 11 |
1 10
|
2th |
|- ( (/) e. 1o <-> -. ( (/) +o _om ) e. ( 1o +o _om ) ) |
| 12 |
|
xor3 |
|- ( -. ( (/) e. 1o <-> ( (/) +o _om ) e. ( 1o +o _om ) ) <-> ( (/) e. 1o <-> -. ( (/) +o _om ) e. ( 1o +o _om ) ) ) |
| 13 |
11 12
|
mpbir |
|- -. ( (/) e. 1o <-> ( (/) +o _om ) e. ( 1o +o _om ) ) |