| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0lt1o |  |-  (/) e. 1o | 
						
							| 2 |  | ordom |  |-  Ord _om | 
						
							| 3 |  | ordirr |  |-  ( Ord _om -> -. _om e. _om ) | 
						
							| 4 |  | omelon |  |-  _om e. On | 
						
							| 5 |  | oa0r |  |-  ( _om e. On -> ( (/) +o _om ) = _om ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( (/) +o _om ) = _om | 
						
							| 7 |  | 1oaomeqom |  |-  ( 1o +o _om ) = _om | 
						
							| 8 | 6 7 | eleq12i |  |-  ( ( (/) +o _om ) e. ( 1o +o _om ) <-> _om e. _om ) | 
						
							| 9 | 3 8 | sylnibr |  |-  ( Ord _om -> -. ( (/) +o _om ) e. ( 1o +o _om ) ) | 
						
							| 10 | 2 9 | ax-mp |  |-  -. ( (/) +o _om ) e. ( 1o +o _om ) | 
						
							| 11 | 1 10 | 2th |  |-  ( (/) e. 1o <-> -. ( (/) +o _om ) e. ( 1o +o _om ) ) | 
						
							| 12 |  | xor3 |  |-  ( -. ( (/) e. 1o <-> ( (/) +o _om ) e. ( 1o +o _om ) ) <-> ( (/) e. 1o <-> -. ( (/) +o _om ) e. ( 1o +o _om ) ) ) | 
						
							| 13 | 11 12 | mpbir |  |-  -. ( (/) e. 1o <-> ( (/) +o _om ) e. ( 1o +o _om ) ) |