Step |
Hyp |
Ref |
Expression |
1 |
|
0lt1o |
⊢ ∅ ∈ 1o |
2 |
|
ordom |
⊢ Ord ω |
3 |
|
ordirr |
⊢ ( Ord ω → ¬ ω ∈ ω ) |
4 |
|
omelon |
⊢ ω ∈ On |
5 |
|
oa0r |
⊢ ( ω ∈ On → ( ∅ +o ω ) = ω ) |
6 |
4 5
|
ax-mp |
⊢ ( ∅ +o ω ) = ω |
7 |
|
1oaomeqom |
⊢ ( 1o +o ω ) = ω |
8 |
6 7
|
eleq12i |
⊢ ( ( ∅ +o ω ) ∈ ( 1o +o ω ) ↔ ω ∈ ω ) |
9 |
3 8
|
sylnibr |
⊢ ( Ord ω → ¬ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) |
10 |
2 9
|
ax-mp |
⊢ ¬ ( ∅ +o ω ) ∈ ( 1o +o ω ) |
11 |
1 10
|
2th |
⊢ ( ∅ ∈ 1o ↔ ¬ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) |
12 |
|
xor3 |
⊢ ( ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) ↔ ( ∅ ∈ 1o ↔ ¬ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) ) |
13 |
11 12
|
mpbir |
⊢ ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) |