| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oaordnrex |
⊢ ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) |
| 2 |
|
0elon |
⊢ ∅ ∈ On |
| 3 |
|
1on |
⊢ 1o ∈ On |
| 4 |
|
omelon |
⊢ ω ∈ On |
| 5 |
|
oveq2 |
⊢ ( 𝑐 = ω → ( ∅ +o 𝑐 ) = ( ∅ +o ω ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑐 = ω → ( 1o +o 𝑐 ) = ( 1o +o ω ) ) |
| 7 |
5 6
|
eleq12d |
⊢ ( 𝑐 = ω → ( ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) ) |
| 8 |
7
|
bibi2d |
⊢ ( 𝑐 = ω → ( ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ↔ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) ) ) |
| 9 |
8
|
notbid |
⊢ ( 𝑐 = ω → ( ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ↔ ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) ) ) |
| 10 |
9
|
rspcev |
⊢ ( ( ω ∈ On ∧ ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) ) → ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) |
| 11 |
4 10
|
mpan |
⊢ ( ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) → ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) |
| 12 |
|
eleq2 |
⊢ ( 𝑏 = 1o → ( ∅ ∈ 𝑏 ↔ ∅ ∈ 1o ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑏 = 1o → ( 𝑏 +o 𝑐 ) = ( 1o +o 𝑐 ) ) |
| 14 |
13
|
eleq2d |
⊢ ( 𝑏 = 1o → ( ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) |
| 15 |
12 14
|
bibi12d |
⊢ ( 𝑏 = 1o → ( ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) ) |
| 16 |
15
|
notbid |
⊢ ( 𝑏 = 1o → ( ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) ) |
| 17 |
16
|
rexbidv |
⊢ ( 𝑏 = 1o → ( ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) ) |
| 18 |
17
|
rspcev |
⊢ ( ( 1o ∈ On ∧ ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) |
| 19 |
3 11 18
|
sylancr |
⊢ ( ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) |
| 20 |
|
eleq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ∈ 𝑏 ↔ ∅ ∈ 𝑏 ) ) |
| 21 |
|
oveq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 +o 𝑐 ) = ( ∅ +o 𝑐 ) ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) |
| 23 |
20 22
|
bibi12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) ) |
| 24 |
23
|
notbid |
⊢ ( 𝑎 = ∅ → ( ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) ) |
| 25 |
24
|
rexbidv |
⊢ ( 𝑎 = ∅ → ( ∃ 𝑐 ∈ On ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) ) |
| 26 |
25
|
rexbidv |
⊢ ( 𝑎 = ∅ → ( ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) ) |
| 27 |
26
|
rspcev |
⊢ ( ( ∅ ∈ On ∧ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) |
| 28 |
2 19 27
|
sylancr |
⊢ ( ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) |
| 29 |
1 28
|
ax-mp |
⊢ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) |