Step |
Hyp |
Ref |
Expression |
1 |
|
oaordnrex |
⊢ ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) |
2 |
|
0elon |
⊢ ∅ ∈ On |
3 |
|
1on |
⊢ 1o ∈ On |
4 |
|
omelon |
⊢ ω ∈ On |
5 |
|
oveq2 |
⊢ ( 𝑐 = ω → ( ∅ +o 𝑐 ) = ( ∅ +o ω ) ) |
6 |
|
oveq2 |
⊢ ( 𝑐 = ω → ( 1o +o 𝑐 ) = ( 1o +o ω ) ) |
7 |
5 6
|
eleq12d |
⊢ ( 𝑐 = ω → ( ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) ) |
8 |
7
|
bibi2d |
⊢ ( 𝑐 = ω → ( ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ↔ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) ) ) |
9 |
8
|
notbid |
⊢ ( 𝑐 = ω → ( ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ↔ ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) ) ) |
10 |
9
|
rspcev |
⊢ ( ( ω ∈ On ∧ ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) ) → ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) |
11 |
4 10
|
mpan |
⊢ ( ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) → ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) |
12 |
|
eleq2 |
⊢ ( 𝑏 = 1o → ( ∅ ∈ 𝑏 ↔ ∅ ∈ 1o ) ) |
13 |
|
oveq1 |
⊢ ( 𝑏 = 1o → ( 𝑏 +o 𝑐 ) = ( 1o +o 𝑐 ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝑏 = 1o → ( ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) |
15 |
12 14
|
bibi12d |
⊢ ( 𝑏 = 1o → ( ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) ) |
16 |
15
|
notbid |
⊢ ( 𝑏 = 1o → ( ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝑏 = 1o → ( ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) ) |
18 |
17
|
rspcev |
⊢ ( ( 1o ∈ On ∧ ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 1o ↔ ( ∅ +o 𝑐 ) ∈ ( 1o +o 𝑐 ) ) ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) |
19 |
3 11 18
|
sylancr |
⊢ ( ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) → ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) |
20 |
|
eleq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ∈ 𝑏 ↔ ∅ ∈ 𝑏 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 +o 𝑐 ) = ( ∅ +o 𝑐 ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) |
23 |
20 22
|
bibi12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) ) |
24 |
23
|
notbid |
⊢ ( 𝑎 = ∅ → ( ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑎 = ∅ → ( ∃ 𝑐 ∈ On ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑎 = ∅ → ( ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ↔ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) ) |
27 |
26
|
rspcev |
⊢ ( ( ∅ ∈ On ∧ ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( ∅ ∈ 𝑏 ↔ ( ∅ +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) |
28 |
2 19 27
|
sylancr |
⊢ ( ¬ ( ∅ ∈ 1o ↔ ( ∅ +o ω ) ∈ ( 1o +o ω ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) ) |
29 |
1 28
|
ax-mp |
⊢ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ∃ 𝑐 ∈ On ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 +o 𝑐 ) ∈ ( 𝑏 +o 𝑐 ) ) |