Metamath Proof Explorer


Theorem omge1

Description: Any non-zero ordinal product is greater-than-or-equal to the term on the left. Lemma 3.11 of Schloeder p. 8. See omword1 . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omge1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) )

Proof

Step Hyp Ref Expression
1 3simpa ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) )
2 on0eln0 ( 𝐵 ∈ On → ( ∅ ∈ 𝐵𝐵 ≠ ∅ ) )
3 2 biimpar ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ∅ ∈ 𝐵 )
4 3 3adant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ∅ ∈ 𝐵 )
5 omword1 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) )
6 1 4 5 syl2anc ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) )