Description: Any non-zero ordinal product is greater-than-or-equal to the term on the left. Lemma 3.11 of Schloeder p. 8. See omword1 . (Contributed by RP, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omge1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) | |
| 2 | on0eln0 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) | |
| 3 | 2 | biimpar | ⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ∅ ∈ 𝐵 ) |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ∅ ∈ 𝐵 ) |
| 5 | omword1 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) | |
| 6 | 1 4 5 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) |