Metamath Proof Explorer


Theorem omge1

Description: Any non-zero ordinal product is greater-than-or-equal to the term on the left. Lemma 3.11 of Schloeder p. 8. See omword1 . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omge1
|- ( ( A e. On /\ B e. On /\ B =/= (/) ) -> A C_ ( A .o B ) )

Proof

Step Hyp Ref Expression
1 3simpa
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> ( A e. On /\ B e. On ) )
2 on0eln0
 |-  ( B e. On -> ( (/) e. B <-> B =/= (/) ) )
3 2 biimpar
 |-  ( ( B e. On /\ B =/= (/) ) -> (/) e. B )
4 3 3adant1
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> (/) e. B )
5 omword1
 |-  ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> A C_ ( A .o B ) )
6 1 4 5 syl2anc
 |-  ( ( A e. On /\ B e. On /\ B =/= (/) ) -> A C_ ( A .o B ) )