| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ancom |
|- ( ( A e. On /\ B e. On ) <-> ( B e. On /\ A e. On ) ) |
| 2 |
1
|
anbi1i |
|- ( ( ( A e. On /\ B e. On ) /\ A =/= (/) ) <-> ( ( B e. On /\ A e. On ) /\ A =/= (/) ) ) |
| 3 |
|
df-3an |
|- ( ( A e. On /\ B e. On /\ A =/= (/) ) <-> ( ( A e. On /\ B e. On ) /\ A =/= (/) ) ) |
| 4 |
|
on0eln0 |
|- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
| 5 |
4
|
adantl |
|- ( ( B e. On /\ A e. On ) -> ( (/) e. A <-> A =/= (/) ) ) |
| 6 |
5
|
pm5.32i |
|- ( ( ( B e. On /\ A e. On ) /\ (/) e. A ) <-> ( ( B e. On /\ A e. On ) /\ A =/= (/) ) ) |
| 7 |
2 3 6
|
3bitr4i |
|- ( ( A e. On /\ B e. On /\ A =/= (/) ) <-> ( ( B e. On /\ A e. On ) /\ (/) e. A ) ) |
| 8 |
|
omword2 |
|- ( ( ( B e. On /\ A e. On ) /\ (/) e. A ) -> B C_ ( A .o B ) ) |
| 9 |
7 8
|
sylbi |
|- ( ( A e. On /\ B e. On /\ A =/= (/) ) -> B C_ ( A .o B ) ) |