Metamath Proof Explorer


Theorem omge2

Description: Any non-zero ordinal product is greater-than-or-equal to the term on the right. Lemma 3.12 of Schloeder p. 9. See omword2 . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omge2
|- ( ( A e. On /\ B e. On /\ A =/= (/) ) -> B C_ ( A .o B ) )

Proof

Step Hyp Ref Expression
1 ancom
 |-  ( ( A e. On /\ B e. On ) <-> ( B e. On /\ A e. On ) )
2 1 anbi1i
 |-  ( ( ( A e. On /\ B e. On ) /\ A =/= (/) ) <-> ( ( B e. On /\ A e. On ) /\ A =/= (/) ) )
3 df-3an
 |-  ( ( A e. On /\ B e. On /\ A =/= (/) ) <-> ( ( A e. On /\ B e. On ) /\ A =/= (/) ) )
4 on0eln0
 |-  ( A e. On -> ( (/) e. A <-> A =/= (/) ) )
5 4 adantl
 |-  ( ( B e. On /\ A e. On ) -> ( (/) e. A <-> A =/= (/) ) )
6 5 pm5.32i
 |-  ( ( ( B e. On /\ A e. On ) /\ (/) e. A ) <-> ( ( B e. On /\ A e. On ) /\ A =/= (/) ) )
7 2 3 6 3bitr4i
 |-  ( ( A e. On /\ B e. On /\ A =/= (/) ) <-> ( ( B e. On /\ A e. On ) /\ (/) e. A ) )
8 omword2
 |-  ( ( ( B e. On /\ A e. On ) /\ (/) e. A ) -> B C_ ( A .o B ) )
9 7 8 sylbi
 |-  ( ( A e. On /\ B e. On /\ A =/= (/) ) -> B C_ ( A .o B ) )