| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om1r |
|- ( A e. On -> ( 1o .o A ) = A ) |
| 2 |
1
|
ad2antrr |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> ( 1o .o A ) = A ) |
| 3 |
|
eloni |
|- ( B e. On -> Ord B ) |
| 4 |
|
ordgt0ge1 |
|- ( Ord B -> ( (/) e. B <-> 1o C_ B ) ) |
| 5 |
4
|
biimpa |
|- ( ( Ord B /\ (/) e. B ) -> 1o C_ B ) |
| 6 |
3 5
|
sylan |
|- ( ( B e. On /\ (/) e. B ) -> 1o C_ B ) |
| 7 |
6
|
adantll |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> 1o C_ B ) |
| 8 |
|
1on |
|- 1o e. On |
| 9 |
|
omwordri |
|- ( ( 1o e. On /\ B e. On /\ A e. On ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) ) |
| 10 |
8 9
|
mp3an1 |
|- ( ( B e. On /\ A e. On ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) ) |
| 11 |
10
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) ) |
| 12 |
11
|
adantr |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) ) |
| 13 |
7 12
|
mpd |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> ( 1o .o A ) C_ ( B .o A ) ) |
| 14 |
2 13
|
eqsstrrd |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> A C_ ( B .o A ) ) |