Metamath Proof Explorer


Theorem omlim2

Description: The non-zero product with an limit ordinal on the right is a limit ordinal. Lemma 3.13 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omlim2
|- ( ( ( A e. On /\ A =/= (/) ) /\ ( Lim B /\ B e. V ) ) -> Lim ( A .o B ) )

Proof

Step Hyp Ref Expression
1 simpll
 |-  ( ( ( A e. On /\ A =/= (/) ) /\ ( Lim B /\ B e. V ) ) -> A e. On )
2 simpr
 |-  ( ( ( A e. On /\ A =/= (/) ) /\ ( Lim B /\ B e. V ) ) -> ( Lim B /\ B e. V ) )
3 2 ancomd
 |-  ( ( ( A e. On /\ A =/= (/) ) /\ ( Lim B /\ B e. V ) ) -> ( B e. V /\ Lim B ) )
4 on0eln0
 |-  ( A e. On -> ( (/) e. A <-> A =/= (/) ) )
5 4 biimpar
 |-  ( ( A e. On /\ A =/= (/) ) -> (/) e. A )
6 5 adantr
 |-  ( ( ( A e. On /\ A =/= (/) ) /\ ( Lim B /\ B e. V ) ) -> (/) e. A )
7 omlimcl
 |-  ( ( ( A e. On /\ ( B e. V /\ Lim B ) ) /\ (/) e. A ) -> Lim ( A .o B ) )
8 1 3 6 7 syl21anc
 |-  ( ( ( A e. On /\ A =/= (/) ) /\ ( Lim B /\ B e. V ) ) -> Lim ( A .o B ) )