Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( A e. On /\ A =/= (/) ) /\ ( Lim B /\ B e. V ) ) -> A e. On ) |
2 |
|
simpr |
|- ( ( ( A e. On /\ A =/= (/) ) /\ ( Lim B /\ B e. V ) ) -> ( Lim B /\ B e. V ) ) |
3 |
2
|
ancomd |
|- ( ( ( A e. On /\ A =/= (/) ) /\ ( Lim B /\ B e. V ) ) -> ( B e. V /\ Lim B ) ) |
4 |
|
on0eln0 |
|- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
5 |
4
|
biimpar |
|- ( ( A e. On /\ A =/= (/) ) -> (/) e. A ) |
6 |
5
|
adantr |
|- ( ( ( A e. On /\ A =/= (/) ) /\ ( Lim B /\ B e. V ) ) -> (/) e. A ) |
7 |
|
omlimcl |
|- ( ( ( A e. On /\ ( B e. V /\ Lim B ) ) /\ (/) e. A ) -> Lim ( A .o B ) ) |
8 |
1 3 6 7
|
syl21anc |
|- ( ( ( A e. On /\ A =/= (/) ) /\ ( Lim B /\ B e. V ) ) -> Lim ( A .o B ) ) |