Metamath Proof Explorer


Theorem omlim2

Description: The non-zero product with an limit ordinal on the right is a limit ordinal. Lemma 3.13 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omlim2 A On A Lim B B V Lim A 𝑜 B

Proof

Step Hyp Ref Expression
1 simpll A On A Lim B B V A On
2 simpr A On A Lim B B V Lim B B V
3 2 ancomd A On A Lim B B V B V Lim B
4 on0eln0 A On A A
5 4 biimpar A On A A
6 5 adantr A On A Lim B B V A
7 omlimcl A On B V Lim B A Lim A 𝑜 B
8 1 3 6 7 syl21anc A On A Lim B B V Lim A 𝑜 B