Metamath Proof Explorer


Theorem omord2lim

Description: Given a limit ordinal, the product of any non-zero ordinal with an ordinal less than that limit ordinal is less than the product of the non-zero ordinal with the limit ordinal . Lemma 3.14 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omord2lim A On A Lim C C V B C A 𝑜 B A 𝑜 C

Proof

Step Hyp Ref Expression
1 limord Lim C Ord C
2 1 ad2antrl A On A Lim C C V Ord C
3 ordelon Ord C B C B On
4 2 3 sylan A On A Lim C C V B C B On
5 elex C V C V
6 1 5 anim12i Lim C C V Ord C C V
7 6 ad2antlr A On A Lim C C V B C Ord C C V
8 elon2 C On Ord C C V
9 7 8 sylibr A On A Lim C C V B C C On
10 simplll A On A Lim C C V B C A On
11 simpr A On A Lim C C V B C B C
12 on0eln0 A On A A
13 12 biimpar A On A A
14 13 ad2antrr A On A Lim C C V B C A
15 omord B On C On A On B C A A 𝑜 B A 𝑜 C
16 15 biimpa B On C On A On B C A A 𝑜 B A 𝑜 C
17 4 9 10 11 14 16 syl32anc A On A Lim C C V B C A 𝑜 B A 𝑜 C
18 17 ex A On A Lim C C V B C A 𝑜 B A 𝑜 C