Metamath Proof Explorer


Theorem omord2lim

Description: Given a limit ordinal, the product of any non-zero ordinal with an ordinal less than that limit ordinal is less than the product of the non-zero ordinal with the limit ordinal . Lemma 3.14 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omord2lim ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶𝐶𝑉 ) ) → ( 𝐵𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 limord ( Lim 𝐶 → Ord 𝐶 )
2 1 ad2antrl ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶𝐶𝑉 ) ) → Ord 𝐶 )
3 ordelon ( ( Ord 𝐶𝐵𝐶 ) → 𝐵 ∈ On )
4 2 3 sylan ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → 𝐵 ∈ On )
5 elex ( 𝐶𝑉𝐶 ∈ V )
6 1 5 anim12i ( ( Lim 𝐶𝐶𝑉 ) → ( Ord 𝐶𝐶 ∈ V ) )
7 6 ad2antlr ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → ( Ord 𝐶𝐶 ∈ V ) )
8 elon2 ( 𝐶 ∈ On ↔ ( Ord 𝐶𝐶 ∈ V ) )
9 7 8 sylibr ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → 𝐶 ∈ On )
10 simplll ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → 𝐴 ∈ On )
11 simpr ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → 𝐵𝐶 )
12 on0eln0 ( 𝐴 ∈ On → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
13 12 biimpar ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 )
14 13 ad2antrr ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → ∅ ∈ 𝐴 )
15 omord ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ↔ ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) )
16 15 biimpa ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( 𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) )
17 4 9 10 11 14 16 syl32anc ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶𝐶𝑉 ) ) ∧ 𝐵𝐶 ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) )
18 17 ex ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶𝐶𝑉 ) ) → ( 𝐵𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) )