Step |
Hyp |
Ref |
Expression |
1 |
|
limord |
⊢ ( Lim 𝐶 → Ord 𝐶 ) |
2 |
1
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) → Ord 𝐶 ) |
3 |
|
ordelon |
⊢ ( ( Ord 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐵 ∈ On ) |
4 |
2 3
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝐵 ∈ 𝐶 ) → 𝐵 ∈ On ) |
5 |
|
elex |
⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ V ) |
6 |
1 5
|
anim12i |
⊢ ( ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) → ( Ord 𝐶 ∧ 𝐶 ∈ V ) ) |
7 |
6
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝐵 ∈ 𝐶 ) → ( Ord 𝐶 ∧ 𝐶 ∈ V ) ) |
8 |
|
elon2 |
⊢ ( 𝐶 ∈ On ↔ ( Ord 𝐶 ∧ 𝐶 ∈ V ) ) |
9 |
7 8
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝐵 ∈ 𝐶 ) → 𝐶 ∈ On ) |
10 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ On ) |
11 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝐵 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) |
12 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
13 |
12
|
biimpar |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝐵 ∈ 𝐶 ) → ∅ ∈ 𝐴 ) |
15 |
|
omord |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ↔ ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) |
16 |
15
|
biimpa |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) |
17 |
4 9 10 11 14 16
|
syl32anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) |
18 |
17
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) |