Metamath Proof Explorer


Theorem omlim2

Description: The non-zero product with an limit ordinal on the right is a limit ordinal. Lemma 3.13 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omlim2 ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐵𝐵𝑉 ) ) → Lim ( 𝐴 ·o 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simpll ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐵𝐵𝑉 ) ) → 𝐴 ∈ On )
2 simpr ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐵𝐵𝑉 ) ) → ( Lim 𝐵𝐵𝑉 ) )
3 2 ancomd ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐵𝐵𝑉 ) ) → ( 𝐵𝑉 ∧ Lim 𝐵 ) )
4 on0eln0 ( 𝐴 ∈ On → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
5 4 biimpar ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 )
6 5 adantr ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐵𝐵𝑉 ) ) → ∅ ∈ 𝐴 )
7 omlimcl ( ( ( 𝐴 ∈ On ∧ ( 𝐵𝑉 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐴 ·o 𝐵 ) )
8 1 3 6 7 syl21anc ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐵𝐵𝑉 ) ) → Lim ( 𝐴 ·o 𝐵 ) )