Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐴 ∈ On ) |
2 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) ) → ( Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) ) |
3 |
2
|
ancomd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐵 ∈ 𝑉 ∧ Lim 𝐵 ) ) |
4 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
5 |
4
|
biimpar |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) ) → ∅ ∈ 𝐴 ) |
7 |
|
omlimcl |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝑉 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐴 ·o 𝐵 ) ) |
8 |
1 3 6 7
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) ) → Lim ( 𝐴 ·o 𝐵 ) ) |