Step |
Hyp |
Ref |
Expression |
1 |
|
ancom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ↔ ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ) |
2 |
1
|
anbi1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ≠ ∅ ) ↔ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐴 ≠ ∅ ) ) |
3 |
|
df-3an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ↔ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ≠ ∅ ) ) |
4 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
6 |
5
|
pm5.32i |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) ↔ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐴 ≠ ∅ ) ) |
7 |
2 3 6
|
3bitr4i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ↔ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) ) |
8 |
|
omword2 |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → 𝐵 ⊆ ( 𝐴 ·o 𝐵 ) ) |
9 |
7 8
|
sylbi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → 𝐵 ⊆ ( 𝐴 ·o 𝐵 ) ) |