Metamath Proof Explorer


Theorem omge2

Description: Any non-zero ordinal product is greater-than-or-equal to the term on the right. Lemma 3.12 of Schloeder p. 9. See omword2 . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omge2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → 𝐵 ⊆ ( 𝐴 ·o 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ancom ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ↔ ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) )
2 1 anbi1i ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ≠ ∅ ) ↔ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐴 ≠ ∅ ) )
3 df-3an ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ↔ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ≠ ∅ ) )
4 on0eln0 ( 𝐴 ∈ On → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
5 4 adantl ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
6 5 pm5.32i ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) ↔ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐴 ≠ ∅ ) )
7 2 3 6 3bitr4i ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ↔ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) )
8 omword2 ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → 𝐵 ⊆ ( 𝐴 ·o 𝐵 ) )
9 7 8 sylbi ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → 𝐵 ⊆ ( 𝐴 ·o 𝐵 ) )