Metamath Proof Explorer


Theorem omge1

Description: Any non-zero ordinal product is greater-than-or-equal to the term on the left. Lemma 3.11 of Schloeder p. 8. See omword1 . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omge1 A On B On B A A 𝑜 B

Proof

Step Hyp Ref Expression
1 3simpa A On B On B A On B On
2 on0eln0 B On B B
3 2 biimpar B On B B
4 3 3adant1 A On B On B B
5 omword1 A On B On B A A 𝑜 B
6 1 4 5 syl2anc A On B On B A A 𝑜 B